During the past two decades, coral reefs have experienced extensive degradation worldwide. One et... more During the past two decades, coral reefs have experienced extensive degradation worldwide. One etiology for this global degradation is a syndrome known as coral bleaching. Mass coral bleaching events are correlated with increased sea-surface temperatures, however, the cellular mechanism underlying this phenomenon is uncertain. To determine if oxidative stress plays a mechanistic role in the process of sea-surface temperature-related coral bleaching, we examined corals along a depth transect in the Florida Keys over a single season that was characterized by unusually high sea-surface temperatures. We observed strong positive correlations between accumulation of oxidative damage products and bleaching in corals over a year of sampling. High levels of antioxidant enzymes and small heat-shock proteins were negatively correlated with levels of oxidative damage products. Corals that experienced oxidative stress had higher chaperonin levels and protein turnover activity. Our results indicate that coral bleaching is tightly coupled to the antioxidant and cellular stress capacity of the symbiotic coral, supporting the mechanistic model that coral bleaching (zooxanthellae loss) may be a final strategy to defend corals from oxidative stress.
Journal of Experimental Marine Biology and Ecology, 2001
We developed a Molecular Biomarker System (MBS) to assess the physiological status of mud snails ... more We developed a Molecular Biomarker System (MBS) to assess the physiological status of mud snails (Ilyanassa obsoleta) challenged by exposure to high temperature, cadmium, atrazine, endosulfan and the water-accommodating fraction of bunker fuel #2. The MBS is used to assay specific cellular parameters of the gastropod cell that are indicative of a non-stressed or stressed condition. The MBS distinguished among responses to each stressor and to non-stressed control conditions. For example, the biomarkers metallothionein and cytochrome P450 2E1 homologue distinguished between metal and non-metal stresses. MBS data from this study corroborate toxicological studies of organismal responses to endosulfan, atrazine, fuel and cadmium stresses. The MBS technology aids in the accurate diagnosis of the snail's health condition because the physiological significance of the changes of each biomarker is well known. This technology is particularly relevant for environmental monitoring because gastropods are used as key indicator species in many estuarine, marine, freshwater and terrestrial ecosystems. Finally, the Molecular Biomarker System technology is relatively inexpensive, easy to implement, precise and can be quickly adapted to an automated, high-throughput system for large sample analysis.
Coral reefs can experience extreme salinity changes, particularly hypo-salinity, as a result of s... more Coral reefs can experience extreme salinity changes, particularly hypo-salinity, as a result of storms, heavy rainy seasons (e.g., monsoons), and coastal runoff. Field and laboratory observations have documented that corals exposed to hypo-saline conditions can undergo extensive bleaching and mortality. There is controversy in the literature as to whether hypo-saline conditions induce a pathological response in corals, and if there is a relationship between decreasing salinity treatment and pathological responses. To test the hypothesis that hypo-salinity exposure does not have a pathological effect on coral, we used histological and cellular diagnostic methods to characterize the pathology in hypo-salinity-exposed corals. Colonies of Stylophora pistillata were exposed to five salinity concentrations [39 parts per thousand (ppt), 32 ppt, 28 ppt, 24 ppt, and 20 ppt] that may realistically occur on a reef. Histological examination indicated an increasing severity of pathomorphologies associated with decreasing salinity, including increased tissue swelling, degradation and loss of zooxanthellae, and tissue necrosis. Pulse-amplitude modulated chlorophyll fluorimetry kinetics demonstrated a decreasing photosynthetic efficiency with decreasing salinity conditions. Cytochrome P450 levels were affected by even slight changes in salinity concentration suggesting that detoxification pathways, as well as several endocrine pathways, may be adversely affected. Finally, these studies demonstrated that hypo-saline conditions can induce an oxidative-stress response in both the host and in its algal symbiont, and in so doing, may synergistically increase oxidative-stress burdens. As with other types of environmental stresses, exposure to hypo-saline conditions may have long-term consequences on coral physiology.
Using a novel molecular biomaker system (MBS), we assessed the physiological status of coral (Mon... more Using a novel molecular biomaker system (MBS), we assessed the physiological status of coral (Montastraea faveolata) challenged by heat stress by assaying specific cellular and molecular parameters. This technology is particularly relevant for corals because heat stress is thought to be an essential component of coral bleaching. This phenomenon is widely believed to be responsible for coral mortality worldwide, particularly during 1997–1998. Specific parameters of coral cellular physiology were assayed using the MBS that are indicative of a nonstressed or stressed condition. The MBS distinguished the separate and combined effects of heat and light on the 2 coral symbionts, a scleractinian coral and a dinoflagellate algae (zooxanthellae). This technology aids in the accurate diagnosis of coral condition because each parameter is physiologically well understood. Finally, the MBS technology is relatively inexpensive, easy to implement, and precise, and it can be quickly adapted to a high-throughout robotic system for mass sample analysis.
Coral communities along the coast of St. John, U.S. Virgin Islands have exhibited site-specific b... more Coral communities along the coast of St. John, U.S. Virgin Islands have exhibited site-specific behavior in declines. In order to determine if these specific coral communities are stressed and whether a pollutant or environmental factor present at this site is a probable stressor, we surveyed six near-shore coral communities in St. John, USVI for environmental pollutants and to determine the cellular physiological condition of the coral, Porites astreoides. The six sites within St. John are Cruz Bay, Caneel Bay, Hawksnest Bay, Trunk Bay, Tektite Reef in Beehive Bay, and Red Point. Red Point was considered the reference site because of its abundance and diversity of species, and it was the furthest removed from down-stream and down-current anthropogenic activities. All sites showed distinct cellular-stress marker patterns, indicating that the physiological condition of each population was different. Populations at Cruz, Hawksnest, Trunk, and Tektite were stressed, as indicated by high levels of DNA lesions and expression of stress proteins. Hawksnest and Tektite were contaminated with polyaromatic hydrocarbons (PAHs), while Cruz was contaminated with semi-volatile organochlorines and nitrogen-based biocides. At least for Hawksnest and Tektite, stress-marker patterns were consistent with an exposure to PAHs. Fecal coliform levels were high in Cruz and Trunk, indicating fecal contamination, as well as consideration for management action. Results from this study serve as a justification for a more thorough and methodical investigation into the stressors responsible for declines of coral populations within St. John. Furthermore, this study supports the argument for the importance of local factors contributing to regional coral reef declines; that not all forces impacting coral are global.
Coral reefs are in crisis. Globally, our reefs are degrading at an accelerating rate and present ... more Coral reefs are in crisis. Globally, our reefs are degrading at an accelerating rate and present methodologies for coral-reef ÔhealthÕ assessment, although providing important information in describing these global declines, have been unable to halt these declines. These assessments are usually employed with no clear purpose and using uncorrelated methods resulting in a failure to prevent or mitigate coral reef deterioration. If we are to ever successfully intervene, we must move beyond the current paradigm, where assessments and intervention decisions are based primarily on descriptive science and embrace a paradigm that promotes both descriptive and mechanistic science to recognize a problem, and recognize it before it becomes a crisis. The primary methodology in this alternative paradigm is analogous to the clinical and diagnostic methodologies of evidence-based medicine. Adopting this new paradigm can provide the evidence to target management actions on those stressors currently impacting reef ecosystems as well as providing a means for proactive management actions to avert irreversible habitat decline.
We developed a molecular biomarker system (MBS) to assess the physiological status of Palaomenete... more We developed a molecular biomarker system (MBS) to assess the physiological status of Palaomenetes pugio (grass shrimp) challenged with exposure to heat stress, cadmium, atrazine, and the water-accommodating fraction of either diesel fuel or bunker fuel No. 2. The MBS assayed 9 specific cellular parameters of shrimp that are indicative of a nonstressed or stressed condition: heat-shock protein 60, heat-shock protein 70, αB-crystallin homologue, lipid peroxide, total glutathione level, ubiquitin, mitochondrial manganese superoxide dismutase, metallothionein, and cytochrome P-450 2E homologue. Using these 9 parameters, the MBS can distinguish between the responses to each stressor, and to the nonstressed control conditions. The MBS was able to determine the structural integrity of the cell as defined by protein turnover, protein chaperoning, and lipid composition via lipid peroxide levels, and the status of key metabolic processes such as cytoskeletal integrity and glutathione redox potential. This technology aids in the accurate diagnosis of the health of shrimp because the physiological significance of changes of each parameter is well known. This technology is particularly relevant for environmental monitoring because grass shrimp are used as key indicator species in many estuarine ecosystems. Finally, this system is easy to implement, precise, and can be quickly adapted to an automated high-throughput system for mass sample analysis.
Coral reefs within the Florida Keys are disappearing at an alarming rate. Coral cover in the Flor... more Coral reefs within the Florida Keys are disappearing at an alarming rate. Coral cover in the Florida Keys National Marine Sanctuary declined by 38% from 1996 to 2000. In 2000, populations of Montastraea annularis at four sites near Molasses Reef within the Florida Keys National Marine Sanctuary and one reef within Biscayne National Park were sampled on a quarterly basis. Anecdotal observations showed corals at Alina’s Reef in Biscayne National Park appeared healthy in March, but experienced an acute loss of coral cover by August. Cellular Diagnostic analysis indicated that Alina’s Reef corals were in distress: they had been afflicted with a severe oxidative damaging and protein-denaturing stress that affected both the corals and their symbiotic zooxanthellae. This condition was associated with a significant xenobiotic detoxification response in both species, reflecting probable chemical contaminant exposure. These results demonstrate that applying a Cellular Diagnostic approach can be effective in helping to identify stress and its underlying causes, providing diagnostic and prognostic biomarkers of coral health.
Regeneration rates of coral lesions reflect the ability of colonies to repair damage and therefor... more Regeneration rates of coral lesions reflect the ability of colonies to repair damage and therefore can be useful indicators of coral health and environmental conditions. We quantified regeneration rates of boulder corals Montastraea spp. at four, 6 m deep patch reefs within Biscayne National Park (BNP) and the upper Florida Keys National Marine Sanctuary (FKNMS), and along a 3 to 18 m depth transect in FKNMS. Coral lesions (approx. 2 cm 2 ) created during sampling for cellular-diagnostic analysis were monitored quarterly in , and in February 2003 Regeneration was a dynamic process, continuing longer than previously reported (> 300 d after lesion formation). Geographic location was the strongest factor affecting regeneration rate at our study sites. Lesion regeneration differed significantly among 6 m deep sites; sites offshore from John Pennekamp Coral Reef State Park (Algae Reef and White Banks) consistently had the highest regeneration rates, with colonies exhibiting exponential declines in lesion size and a high percentage of completely healed lesions. Along the depth gradient, corals at the 3 m site regenerated significantly faster than corals at 6, 9, and 18 m. These results suggest that corals sampled at FKNMS 6, 9 and 18 m sites and BNP were in poor physiological condition or were exposed to suboptimal environmental conditions, as evidenced by highly variable and overall low regeneration rates, a low percentage of healed lesions, and a high occurrence of breakage or Type II lesions (lesions that increased in size by merging with areas of denuded tissue on the colony).
During the past two decades, coral reefs have experienced extensive degradation worldwide. One et... more During the past two decades, coral reefs have experienced extensive degradation worldwide. One etiology for this global degradation is a syndrome known as coral bleaching. Mass coral bleaching events are correlated with increased sea-surface temperatures, however, the cellular mechanism underlying this phenomenon is uncertain. To determine if oxidative stress plays a mechanistic role in the process of sea-surface temperature-related coral bleaching, we examined corals along a depth transect in the Florida Keys over a single season that was characterized by unusually high sea-surface temperatures. We observed strong positive correlations between accumulation of oxidative damage products and bleaching in corals over a year of sampling. High levels of antioxidant enzymes and small heat-shock proteins were negatively correlated with levels of oxidative damage products. Corals that experienced oxidative stress had higher chaperonin levels and protein turnover activity. Our results indicate that coral bleaching is tightly coupled to the antioxidant and cellular stress capacity of the symbiotic coral, supporting the mechanistic model that coral bleaching (zooxanthellae loss) may be a final strategy to defend corals from oxidative stress.
Journal of Experimental Marine Biology and Ecology, 2001
We developed a Molecular Biomarker System (MBS) to assess the physiological status of mud snails ... more We developed a Molecular Biomarker System (MBS) to assess the physiological status of mud snails (Ilyanassa obsoleta) challenged by exposure to high temperature, cadmium, atrazine, endosulfan and the water-accommodating fraction of bunker fuel #2. The MBS is used to assay specific cellular parameters of the gastropod cell that are indicative of a non-stressed or stressed condition. The MBS distinguished among responses to each stressor and to non-stressed control conditions. For example, the biomarkers metallothionein and cytochrome P450 2E1 homologue distinguished between metal and non-metal stresses. MBS data from this study corroborate toxicological studies of organismal responses to endosulfan, atrazine, fuel and cadmium stresses. The MBS technology aids in the accurate diagnosis of the snail's health condition because the physiological significance of the changes of each biomarker is well known. This technology is particularly relevant for environmental monitoring because gastropods are used as key indicator species in many estuarine, marine, freshwater and terrestrial ecosystems. Finally, the Molecular Biomarker System technology is relatively inexpensive, easy to implement, precise and can be quickly adapted to an automated, high-throughput system for large sample analysis.
Coral reefs can experience extreme salinity changes, particularly hypo-salinity, as a result of s... more Coral reefs can experience extreme salinity changes, particularly hypo-salinity, as a result of storms, heavy rainy seasons (e.g., monsoons), and coastal runoff. Field and laboratory observations have documented that corals exposed to hypo-saline conditions can undergo extensive bleaching and mortality. There is controversy in the literature as to whether hypo-saline conditions induce a pathological response in corals, and if there is a relationship between decreasing salinity treatment and pathological responses. To test the hypothesis that hypo-salinity exposure does not have a pathological effect on coral, we used histological and cellular diagnostic methods to characterize the pathology in hypo-salinity-exposed corals. Colonies of Stylophora pistillata were exposed to five salinity concentrations [39 parts per thousand (ppt), 32 ppt, 28 ppt, 24 ppt, and 20 ppt] that may realistically occur on a reef. Histological examination indicated an increasing severity of pathomorphologies associated with decreasing salinity, including increased tissue swelling, degradation and loss of zooxanthellae, and tissue necrosis. Pulse-amplitude modulated chlorophyll fluorimetry kinetics demonstrated a decreasing photosynthetic efficiency with decreasing salinity conditions. Cytochrome P450 levels were affected by even slight changes in salinity concentration suggesting that detoxification pathways, as well as several endocrine pathways, may be adversely affected. Finally, these studies demonstrated that hypo-saline conditions can induce an oxidative-stress response in both the host and in its algal symbiont, and in so doing, may synergistically increase oxidative-stress burdens. As with other types of environmental stresses, exposure to hypo-saline conditions may have long-term consequences on coral physiology.
Using a novel molecular biomaker system (MBS), we assessed the physiological status of coral (Mon... more Using a novel molecular biomaker system (MBS), we assessed the physiological status of coral (Montastraea faveolata) challenged by heat stress by assaying specific cellular and molecular parameters. This technology is particularly relevant for corals because heat stress is thought to be an essential component of coral bleaching. This phenomenon is widely believed to be responsible for coral mortality worldwide, particularly during 1997–1998. Specific parameters of coral cellular physiology were assayed using the MBS that are indicative of a nonstressed or stressed condition. The MBS distinguished the separate and combined effects of heat and light on the 2 coral symbionts, a scleractinian coral and a dinoflagellate algae (zooxanthellae). This technology aids in the accurate diagnosis of coral condition because each parameter is physiologically well understood. Finally, the MBS technology is relatively inexpensive, easy to implement, and precise, and it can be quickly adapted to a high-throughout robotic system for mass sample analysis.
Coral communities along the coast of St. John, U.S. Virgin Islands have exhibited site-specific b... more Coral communities along the coast of St. John, U.S. Virgin Islands have exhibited site-specific behavior in declines. In order to determine if these specific coral communities are stressed and whether a pollutant or environmental factor present at this site is a probable stressor, we surveyed six near-shore coral communities in St. John, USVI for environmental pollutants and to determine the cellular physiological condition of the coral, Porites astreoides. The six sites within St. John are Cruz Bay, Caneel Bay, Hawksnest Bay, Trunk Bay, Tektite Reef in Beehive Bay, and Red Point. Red Point was considered the reference site because of its abundance and diversity of species, and it was the furthest removed from down-stream and down-current anthropogenic activities. All sites showed distinct cellular-stress marker patterns, indicating that the physiological condition of each population was different. Populations at Cruz, Hawksnest, Trunk, and Tektite were stressed, as indicated by high levels of DNA lesions and expression of stress proteins. Hawksnest and Tektite were contaminated with polyaromatic hydrocarbons (PAHs), while Cruz was contaminated with semi-volatile organochlorines and nitrogen-based biocides. At least for Hawksnest and Tektite, stress-marker patterns were consistent with an exposure to PAHs. Fecal coliform levels were high in Cruz and Trunk, indicating fecal contamination, as well as consideration for management action. Results from this study serve as a justification for a more thorough and methodical investigation into the stressors responsible for declines of coral populations within St. John. Furthermore, this study supports the argument for the importance of local factors contributing to regional coral reef declines; that not all forces impacting coral are global.
Coral reefs are in crisis. Globally, our reefs are degrading at an accelerating rate and present ... more Coral reefs are in crisis. Globally, our reefs are degrading at an accelerating rate and present methodologies for coral-reef ÔhealthÕ assessment, although providing important information in describing these global declines, have been unable to halt these declines. These assessments are usually employed with no clear purpose and using uncorrelated methods resulting in a failure to prevent or mitigate coral reef deterioration. If we are to ever successfully intervene, we must move beyond the current paradigm, where assessments and intervention decisions are based primarily on descriptive science and embrace a paradigm that promotes both descriptive and mechanistic science to recognize a problem, and recognize it before it becomes a crisis. The primary methodology in this alternative paradigm is analogous to the clinical and diagnostic methodologies of evidence-based medicine. Adopting this new paradigm can provide the evidence to target management actions on those stressors currently impacting reef ecosystems as well as providing a means for proactive management actions to avert irreversible habitat decline.
We developed a molecular biomarker system (MBS) to assess the physiological status of Palaomenete... more We developed a molecular biomarker system (MBS) to assess the physiological status of Palaomenetes pugio (grass shrimp) challenged with exposure to heat stress, cadmium, atrazine, and the water-accommodating fraction of either diesel fuel or bunker fuel No. 2. The MBS assayed 9 specific cellular parameters of shrimp that are indicative of a nonstressed or stressed condition: heat-shock protein 60, heat-shock protein 70, αB-crystallin homologue, lipid peroxide, total glutathione level, ubiquitin, mitochondrial manganese superoxide dismutase, metallothionein, and cytochrome P-450 2E homologue. Using these 9 parameters, the MBS can distinguish between the responses to each stressor, and to the nonstressed control conditions. The MBS was able to determine the structural integrity of the cell as defined by protein turnover, protein chaperoning, and lipid composition via lipid peroxide levels, and the status of key metabolic processes such as cytoskeletal integrity and glutathione redox potential. This technology aids in the accurate diagnosis of the health of shrimp because the physiological significance of changes of each parameter is well known. This technology is particularly relevant for environmental monitoring because grass shrimp are used as key indicator species in many estuarine ecosystems. Finally, this system is easy to implement, precise, and can be quickly adapted to an automated high-throughput system for mass sample analysis.
Coral reefs within the Florida Keys are disappearing at an alarming rate. Coral cover in the Flor... more Coral reefs within the Florida Keys are disappearing at an alarming rate. Coral cover in the Florida Keys National Marine Sanctuary declined by 38% from 1996 to 2000. In 2000, populations of Montastraea annularis at four sites near Molasses Reef within the Florida Keys National Marine Sanctuary and one reef within Biscayne National Park were sampled on a quarterly basis. Anecdotal observations showed corals at Alina’s Reef in Biscayne National Park appeared healthy in March, but experienced an acute loss of coral cover by August. Cellular Diagnostic analysis indicated that Alina’s Reef corals were in distress: they had been afflicted with a severe oxidative damaging and protein-denaturing stress that affected both the corals and their symbiotic zooxanthellae. This condition was associated with a significant xenobiotic detoxification response in both species, reflecting probable chemical contaminant exposure. These results demonstrate that applying a Cellular Diagnostic approach can be effective in helping to identify stress and its underlying causes, providing diagnostic and prognostic biomarkers of coral health.
Regeneration rates of coral lesions reflect the ability of colonies to repair damage and therefor... more Regeneration rates of coral lesions reflect the ability of colonies to repair damage and therefore can be useful indicators of coral health and environmental conditions. We quantified regeneration rates of boulder corals Montastraea spp. at four, 6 m deep patch reefs within Biscayne National Park (BNP) and the upper Florida Keys National Marine Sanctuary (FKNMS), and along a 3 to 18 m depth transect in FKNMS. Coral lesions (approx. 2 cm 2 ) created during sampling for cellular-diagnostic analysis were monitored quarterly in , and in February 2003 Regeneration was a dynamic process, continuing longer than previously reported (> 300 d after lesion formation). Geographic location was the strongest factor affecting regeneration rate at our study sites. Lesion regeneration differed significantly among 6 m deep sites; sites offshore from John Pennekamp Coral Reef State Park (Algae Reef and White Banks) consistently had the highest regeneration rates, with colonies exhibiting exponential declines in lesion size and a high percentage of completely healed lesions. Along the depth gradient, corals at the 3 m site regenerated significantly faster than corals at 6, 9, and 18 m. These results suggest that corals sampled at FKNMS 6, 9 and 18 m sites and BNP were in poor physiological condition or were exposed to suboptimal environmental conditions, as evidenced by highly variable and overall low regeneration rates, a low percentage of healed lesions, and a high occurrence of breakage or Type II lesions (lesions that increased in size by merging with areas of denuded tissue on the colony).
Uploads
Papers by Cheryl Woodley