മാട്രിക്സ്
ഗണിതശാസ്ത്രത്തിൽ ചതുരാകൃതിയിൽ സംഖ്യകളെ വിന്യസിക്കുന്ന രീതിയാണ് മാട്രിക്സ്.സംഖ്യകളെ വരികളും നിരകളും ആയാണ് വിന്യസിക്കുന്നത്.നിരകളുടേയും വരികളുടേയും എണ്ണം തുല്യമാവണമെന്നില്ല.ഒരു മട്രിക്സിന് സാരണികത്തെപ്പോലെ(Determinent) സംഖ്യാത്മകമൂല്യം കണ്ടെത്താനാവില്ല.സംഖ്യകളെ മൊത്തത്തിൽ ബ്രാക്കറ്റിനുള്ളിലായാണ് വിന്യസിക്കുന്നത്.
കോടി
[തിരുത്തുക]ഒരു മാട്രിക്സിന്റെ കോടി(Order) നിർണ്ണയിക്കുന്നത് അതിന്റെ നിരയേയും വരിയേയും അടിസ്ഥാനപ്പെടുത്തിയാണ്.ഒരു മാട്രിക്സിലെ വരികളുടേയും നിരകളുടേയും എണ്ണത്തേയാണ് കോടി എന്നു പറയുന്നത്.m അക്ഷരം വരിയുടെ എണ്ണത്തേയും n എന്ന അക്ഷരം നിരയുടെ എണ്ണത്തേയും സൂചിപ്പിച്ചാൽ കോടി mXn (m ബൈ n) ആണെന്ന് പറയാം.
വിവിധതരം മാട്രിക്സുകൾ
[തിരുത്തുക]നിര മട്രിക്സ്
[തിരുത്തുക]ഒരു നിര മാത്രമുള്ള മാട്രിക്സാണ് നിര മാട്രിക്സ്(row matrix)
വരി മാട്രിക്സ്
[തിരുത്തുക]ഒരു വരി മാത്രമുള്ള മാട്രിക്സാണ് വരി മാട്രിക്സ്(column matrix)
സമചതുര മാട്രിക്സ്
[തിരുത്തുക]ഒരു മാട്രിക്സിന്റെ നിരയുടെ എണ്ണവും വരിയുടെ എണ്ണവും തുല്യമായാൽ അത്തരം മാട്രിക്സാണ് സമചതുരമാട്രിക്സ്(Square matrix).ഇവിടെ m=n ആയിരിയ്ക്കും
വികർണ്ണ മാട്രിക്സ്
[തിരുത്തുക]വികർണ്ണപദങ്ങളൊഴികെ എല്ലാപദങ്ങളും പൂജ്യം ആയ മാട്രിക്സ് ആണ് വികർണ്ണമാട്രിക്സ്(Diagonal matrix).ഇത് ഒരു സമചതുരമാട്രിക്സ് ആയിരിയ്ക്കുക കൂടി വേണം.
തൽസമക മാട്രിക്സ്
[തിരുത്തുക]ഒരു വികർണ്ണമാട്രിക്സിലെ വികർണ്ണങ്ങളെല്ലാം 1ഉം ബക്കിയെല്ലാം പൂജ്യവും ആയ മാട്രിക്സ് ആണിത്(Identity matrix).ഇതിനെ യൂണിറ്റ് മാട്രിക്സ് എന്നുകൂടി പറയുന്നു.
പക്ഷാന്തരിതം
[തിരുത്തുക]ഒരു മാട്രിക്സിലെ വരികളെ നിരകളായും നിരകളെ വരികളായും മാറ്റിയെഴുതുമ്പോൾ കിട്ടുന്ന പുതിയ മാട്രിക്സ് ആണ് പക്ഷാന്തരിതം(Transpose).mXn കോടിയുള്ള ഒരു മാട്രിക്സിന്റെ പക്ഷാന്തരിതത്തിന്റെ കോടി nXm ആയിരിക്കും.