Cell adhesion and detachment to and from the extracellular matrix (ECM) are critical regulators o... more Cell adhesion and detachment to and from the extracellular matrix (ECM) are critical regulators of cell function and fate due to the exchange of mechanical signals between the cell and its microenvironment. To study this cell mechanobiology, researchers have developed several innovative methods to investigate cell adhesion in vitro; however, most of these culture platforms are unnaturally stiff or static. To better capture the soft, dynamic nature of the ECM, we present a PEG-based hydrogel in which the context and geometry of the extracellular space can be precisely controlled in situ via two-photon induced erosion. Here, we characterize the two-photon erosion process, demonstrate its efficacy in the presence of cells, and subsequently exploit it to induce subcellular detachment from soft hydrogels. A working space was established for a range of laser powers required to induce complete erosion of the gel, and these data are plotted with model predictions. From this working space, two-photon irradiation parameters were selected for complete erosion in the presence of cells. Micron-scale features were eroded on and within a gel to demonstrate the resolution of patterning with these irradiation conditions. Lastly, two-photon irradiation was used to erode the material at the cell-gel interface to remove cell adhesion sites selectively, and cell retraction was monitored to quantify the mesenchymal stem cell (MSC) response to subcellular detachment from soft materials.
The extracellular space, or cell microenvironment, choreographs cell behavior through myriad cont... more The extracellular space, or cell microenvironment, choreographs cell behavior through myriad controlled signals, and aberrant cues can result in dysfunction and disease. For functional studies of human cell biology or expansion and delivery of cells for therapeutic purposes, scientists must decipher this intricate map of microenvironment biology and develop ways to mimic these functions in vitro. In this Perspective, we describe technologies for four-dimensional (4D) biology: cell-laden matrices engineered to recapitulate tissue and organ function in 3D space and over time.
Journal of Polymer Science Part A: Polymer Chemistry, 2013
There is a growing interest in developing dynamically responsive hydrogels whose material propert... more There is a growing interest in developing dynamically responsive hydrogels whose material properties are modulated by environmental cues, including with light. These photoresponsive hydrogels afford spatiotemporal control of material properties through an array of photoaddition and photodegradation reactions. For photoresponsive hydrogels to be utilized most effectively in a broad range of applications, the photoreaction behavior should be well understood, enabling the design of dynamic materials with uniform or anisostropic material properties. Here, a general statisticalkinetic model has been developed to describe controlled photodegradation in hydrogel polymer networks containing photolabile crosslinks. The heterogeneous reaction rates that necessarily accompany photochemical reactions were described by solving a system of partial differential equations that quantify the photoreaction kinetics in the material. The kinetics were coupled with statistical descriptions of network structure in chain polymerized hydrogels to model material property changes and mass loss that occur during the photodegradation process. Finally, the physical relevance of the model was demonstrated by comparing model predictions with experimental data of mass loss and material property changes in photodegradable, PEG-based hydrogels.
Journal of Biomedical Materials Research Part A, 2012
In this study, the authors present a photodegradable microparticle system that can be used to ent... more In this study, the authors present a photodegradable microparticle system that can be used to entrap and deliver bioactive proteins to cells during culture. By using a photosensitive delivery system, experimenters can achieve a wide variety of spatiotemporally regulated release profiles with a single microparticle formulation, thereby, enabling one to probe many questions as to how protein presentation can be manipulated to regulate cell function. Photodegradable microparticles were synthesized via inverse suspension polymerization with a mean diameter of 22 lm, and degradation was demonstrated upon exposure to several irradiation conditions. The protein-loaded depots were incorporated into cell cultures and release of bioactive protein was quantified during the photodegradation process. This phototriggered release allowed for the delivery of TGF-b1 to stimulate PE25 cells and for the delivery of fluorescently labeled Annexin V to assay apoptotic 3T3 fibroblasts during culture. By incorporating these photoresponsive protein delivery depots into cell culture, new types of experiments are now possible to test hypotheses about how individual or multiple soluble factors might affect cell function when presented in a uniform, temporally varying, or gradient manner.
Cell adhesion and detachment to and from the extracellular matrix (ECM) are critical regulators o... more Cell adhesion and detachment to and from the extracellular matrix (ECM) are critical regulators of cell function and fate due to the exchange of mechanical signals between the cell and its microenvironment. To study this cell mechanobiology, researchers have developed several innovative methods to investigate cell adhesion in vitro; however, most of these culture platforms are unnaturally stiff or static. To better capture the soft, dynamic nature of the ECM, we present a PEG-based hydrogel in which the context and geometry of the extracellular space can be precisely controlled in situ via two-photon induced erosion. Here, we characterize the two-photon erosion process, demonstrate its efficacy in the presence of cells, and subsequently exploit it to induce subcellular detachment from soft hydrogels. A working space was established for a range of laser powers required to induce complete erosion of the gel, and these data are plotted with model predictions. From this working space, two-photon irradiation parameters were selected for complete erosion in the presence of cells. Micron-scale features were eroded on and within a gel to demonstrate the resolution of patterning with these irradiation conditions. Lastly, two-photon irradiation was used to erode the material at the cell-gel interface to remove cell adhesion sites selectively, and cell retraction was monitored to quantify the mesenchymal stem cell (MSC) response to subcellular detachment from soft materials.
The extracellular space, or cell microenvironment, choreographs cell behavior through myriad cont... more The extracellular space, or cell microenvironment, choreographs cell behavior through myriad controlled signals, and aberrant cues can result in dysfunction and disease. For functional studies of human cell biology or expansion and delivery of cells for therapeutic purposes, scientists must decipher this intricate map of microenvironment biology and develop ways to mimic these functions in vitro. In this Perspective, we describe technologies for four-dimensional (4D) biology: cell-laden matrices engineered to recapitulate tissue and organ function in 3D space and over time.
Journal of Polymer Science Part A: Polymer Chemistry, 2013
There is a growing interest in developing dynamically responsive hydrogels whose material propert... more There is a growing interest in developing dynamically responsive hydrogels whose material properties are modulated by environmental cues, including with light. These photoresponsive hydrogels afford spatiotemporal control of material properties through an array of photoaddition and photodegradation reactions. For photoresponsive hydrogels to be utilized most effectively in a broad range of applications, the photoreaction behavior should be well understood, enabling the design of dynamic materials with uniform or anisostropic material properties. Here, a general statisticalkinetic model has been developed to describe controlled photodegradation in hydrogel polymer networks containing photolabile crosslinks. The heterogeneous reaction rates that necessarily accompany photochemical reactions were described by solving a system of partial differential equations that quantify the photoreaction kinetics in the material. The kinetics were coupled with statistical descriptions of network structure in chain polymerized hydrogels to model material property changes and mass loss that occur during the photodegradation process. Finally, the physical relevance of the model was demonstrated by comparing model predictions with experimental data of mass loss and material property changes in photodegradable, PEG-based hydrogels.
Journal of Biomedical Materials Research Part A, 2012
In this study, the authors present a photodegradable microparticle system that can be used to ent... more In this study, the authors present a photodegradable microparticle system that can be used to entrap and deliver bioactive proteins to cells during culture. By using a photosensitive delivery system, experimenters can achieve a wide variety of spatiotemporally regulated release profiles with a single microparticle formulation, thereby, enabling one to probe many questions as to how protein presentation can be manipulated to regulate cell function. Photodegradable microparticles were synthesized via inverse suspension polymerization with a mean diameter of 22 lm, and degradation was demonstrated upon exposure to several irradiation conditions. The protein-loaded depots were incorporated into cell cultures and release of bioactive protein was quantified during the photodegradation process. This phototriggered release allowed for the delivery of TGF-b1 to stimulate PE25 cells and for the delivery of fluorescently labeled Annexin V to assay apoptotic 3T3 fibroblasts during culture. By incorporating these photoresponsive protein delivery depots into cell culture, new types of experiments are now possible to test hypotheses about how individual or multiple soluble factors might affect cell function when presented in a uniform, temporally varying, or gradient manner.
Uploads
Papers by Mark Tibbitt