
INTRODUCTION TO DE RHAM COHOMOLOGY

REDMOND MCNAMARA

Abstract. We briefly review differential forms on manifolds. We prove ho-
motopy invariance of cohomology, the Poincaré lemma and exactness of the

Mayer–Vietoris sequence. We then compute the cohomology of some simple

examples. Finally, we prove Poincaré duality for orientable manifolds.
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1. Introduction

Definition 1.1. A fiber bundle E over a topological space B with fiber a given
topological space F is a space along with a continuous surjection π such that for
each x ∈ E there exists a neighborhood π(x) ∈ U ⊂ B and a homeomorphism φ
such that the following diagram commutes,

π−1(U)
φ //

π

��

U × F

i

��
U

where i is the usual map, i(p, v) = p. We call F the fiber and B the base space.

Example 1.2. The trivial bundle over a base space B with fiber F is just B × F
with the maps π = i and φ = id.

Definition 1.3. A section s : B → E of a fiber bundle is a continuous map with
the property that π(s(p)) = p for all p ∈ B. If B and E are smooth manifolds, we
require that s is smooth.
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Definition 1.4. A vector bundle is a fiber bundle where the fiber is a vector space
and with the additional properties that:

(1) For all x ∈ E and all corresponding U, V ⊂ B and φ, ψ we have ψ ◦
φ−1(x, v) = (x, gUV (v)) for some invertible linear function gUV depend-
ing only on U and V .

(2) For all U, V,W , as above, we have gUU = id and gUV ◦ gVW ◦ gWU = id.
Intuitively, any three transition maps must agree.

Remark 1.5. In this paper, we concern ourselves with vector bundles over manifolds.

Definition 1.6. A tangent vector v on a n-dimensional manifold M at a point
p is an equivalence class of all smooth curves {γα} such that γα : (−1, 1) → M ,
γα(0) = p and given some chart (U, f) such that p ∈ f(U) we have

D(f−1 ◦ γα)
∣∣
f−1(p)

= D(f−1 ◦ γβ)
∣∣
f−1(p)

,

for all γα ∼ γβ where D(·)
∣∣
f−1(p)

is just the usual derivative on Euclidean space at

f−1(p). The space of all vectors at a point p is called the tangent space of M at p,
denote TpM . The space of all vectors at all points on the manifold is the tangent
bundle TM and a section of the tangent bundle is a vector field on M .

Proposition 1.7. For all M an n-dimensional manifold and p ∈ M we have
TpM ∼= Rn.

Proposition 1.8. The tangent bundle is a vector bundle.

Definition 1.9. For a vector bundle E over the base space B with fiber F , we
have the dual bundle E∗ over base space B with fiber F ∗,

E∗ ≡
∐
p∈B

π−1(p)∗

≡
∐
p∈B
{y : y ◦ φ−1 is a linear map on {p} × F}

We define π∗(π−1(p)) = {p} and φ∗(y) = y ◦ φ. The new transition maps are
given by g∗UV = (gTUV )−1. The cotangent bundle is the dual of the tangent bundle,
(TM)∗ ≡ T ∗M .

Definition 1.10. Define the kth exterior power of a vector space F with itself

ΛkF ≡
⊗
k

F/ ∼,

where v1⊗· · ·⊗w⊗· · ·⊗w⊗· · ·⊗vk ∼ 0 and of course two elements of the exterior
power are equivalent if their difference is 0. For the element {v1⊗· · ·⊗vk} we write
v1 ∧ · · · ∧ vk and define ∧ : ΛkF ⊕ ΛmF → Λk+mF by

∧(v1 ∧ · · · ∧ vk, vk+1 ∧ · · · ∧ vk+m) ≡ v1 ∧ · · · ∧ vk+m.
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Definition 1.11. For a vector bundle E over the base space B with fiber F we
define the kth exterior power

ΛkE ≡
∐
p∈B

Λkπ−1(p)

≡
∐
p∈B
{(x1, . . . , xk) : xi ∈ E, π(xi) = π(xj)∀i, j}

/
∼,

where (x1, . . . , xk) ∼ (y1, . . . , yk) whenever

φ(x1) ∧ · · · ∧ φ(xk) = φ(y1) ∧ · · · ∧ φ(yk).

with maps Λkφ(x1, . . . , xk) = (p, φ(x1) ∧ · · · ∧ φ(xk)) and π = i ◦ φ. The transition
maps ΛkgUV are given by taking the kth exterior power of the operator gUV in the
traditional, vector-space sense.

Remark 1.12. The dual and the exterior product not only define new objects in a
category to associated objects. (We would say elements and set except the collection
of all vectors spaces or all vector bundles is not properly a set since it’s too big).
Both the dual and the exterior product are functors because they also send arrows
to arrows. (Again, we would say functions except we may want to look at certain
kinds of functions like strictly linear functions or may want to use objects which
aren’t sets). This is true on bundles as well as on vector spaces. Given a linear
function f : V → W , we get a function f∗ : W ∗ → V ∗ where f∗(v)(w) = v∗(f(w)).
Similarly, given a linear function f : V →W , we get another function Λkf : ΛkV →
ΛkW by f(v1 ∧ · · · ∧ vk) = f(v1) ∧ · · · ∧ f(vk).

Definition 1.13. The space of k-forms on a manifold M , denoted Ωk(M) or Ωk

when the manifold is clear, is the space of sections of ΛkT ∗M .

Definition 1.14. Pick a basis v1, . . . , vn for a fiber R at a point p ∈ M . Define
the exterior derivative d : Ωk → Ωk+1 at p by

d(a(p)w1 ∧ · · · ∧ wk) ≡
∑

1≤m≤n

∂a

∂vm

∣∣
p
vm ∧ w1 ∧ · · · ∧ wk.

This extends linearly to sums.

Definition 1.15. A chain complex is a sequence of abelian groups C0, C1, C2, . . .
and a sequence of homomorphism called boundary maps

C0
∂1←− C1

∂2←− C2
∂3←− · · ·

with the property that ∂k ◦ ∂k+1 = 0 for all k. Then the kth homology group is
defined by Hk ≡ ker(∂k)/im(∂k+1). Notice that this is well defined since the groups
are abelian and ∂k ◦ ∂k+1 = 0 implies ker(∂k) ⊃im(∂k+1).

A cochain complex is a sequence of abelian groups C0, C1, C2, . . . and a sequence
of homomorphisms called coboundary maps

C0 δ0−→ C1 δ1−→ C2 δ2−→ · · ·
with the property that δk+1 ◦ δk = 0. Then the kth cohomology group is defined
by Hk ≡ ker(δk)/im(δk−1).

Lemma 1.16. The exterior derivative is a homomorphism with the property that
d2 = 0.
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Definition 1.17. The De Rham cohomology of a manifold is the cohomology
generated by the cochain complex

Ω0 d−→ Ω1 d−→ Ω2 d−→ · · ·

If ω ∈ ker(d) we say ω is closed. If ω ∈im(d) we say ω is exact. For the rest of the
paper, we deal with De Rham cohomology.

2. Smooth Homotopy Invariance

Definition 2.1. Given a map f : M → N , the pullback map f∗ : Ωk(N)→ Ωk(M)
is defined by

f∗(ω)
∣∣
p
(v1, . . . , vk) ≡ ω

∣∣
f(p)

(Df−1v1, . . . , Df
−1vk).

Proposition 2.2. The pullback commutes with the exterior derivative i.e. the
following diagram commutes.

Ωk(N)
d //

f∗

��

Ωk+1(N)

f∗

��
Ωk(M)

d // Ωk+1(M)

Proposition 2.3. The pullback commutes with the wedge product i.e. the following
diagram commutes.

Ωk(N)⊕ Ωm(N)
∧ //

f∗

��

Ωk+m(N)

f∗

��
Ωk(M)⊕ Ωm(M)

∧ // Ωk+m(M)

Definition 2.4. We say a map h : M×I → N is a smooth homotopy if it is smooth.
We say two maps are smoothly homotopic, f : M → N and g : M → N , if there
exists a smooth homotopy h with h(x, 0) = f(x) and h(x, 1) = g(x). We say two
manifolds M and N are smooth homotopy equivalent if there exist smooth maps
f : M → N and g : N → M such that g ◦ f and f ◦ g are smoothly homotopic to
the identity maps on M and N .

Theorem 2.5. If two manifolds M and N are smoothly homotopy equivalent then
their kth cohomology groups are isomorphic for all k.

Proof. Suppose f : M → N and g : N → M as above, with h : M × I → M such
that h(x, 0) = x and h(x, 1) = g(f(x)). Let ω ∈ Hk((g ◦ f)(M)). Then there exists
a pullback

h∗(ω) ≡ η + dt ∧ α,
where η ∈ Hk(M × I), α ∈ Hk−1(M × I), neither η nor α contain a dt term and
t is the coordinate in I. Furthermore, for all t0 ∈ I, h(·, t0) : M → M induces the
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pullback

h∗(·, t0)(ω) = η
∣∣
t=t0

Since η varies smoothly in time, we can apply the fundamental theorem of calculus,

h∗(·, 1)(ω)− h∗(·, 0)(ω) = η
∣∣
t=1
− η
∣∣
t=0

=

∫ 1

0

∂η

∂t
dt

We have two exterior derivative operators which we will temporarily distinguish,
dM and dM×I . Because ω is closed and the pullback commutes with the exterior
derivative,

0 = h∗(dM (ω)) = dM×I(h
∗(ω)) = dt ∧ (

∂η

∂t
− dM (α)).

So ∂η
∂t = dM (α). Combining these last two equations yields,

h∗(·, 1)(ω)− h∗(·, 0)(ω) =

∫ 1

0

dM (α)dt = dM

(∫ 1

0

αdt

)
which is an exact form. Therefore, (g ◦ f)∗ = h∗(·, 1) is the identity map on Hk so
f∗ and g∗ are inverses so they are isomorphisms.

�

Corollary 2.6 (Poincaré Lemma). Every closed form is locally exact.

Proof. Take a ball around any point p. Every ball is contractible. We just showed
that Hk(Rn−1) ∼= Hk(Rn−1 × I) so we only need to show that Hn(Rn) = 0, for
instance by explicit construction: d(

∫ x0

p
fdxn · x1 ∧ · · · ∧ xn−1) = f · x1 ∧ · · · ∧ xn

Then apply theorem 2.2. �

Definition 2.7. Define the Euler Characteristic on a closed, oriented manifold M
of dimension n by

χ(M) ≡
∑
k

(−1)k dimHk(M)

Corollary 2.8. If two manifolds M and N are smoothly homotopy equivalent, then
χ(M) = χ(N).

Proof. Since the dimension of each cohomology class is homotopy invariant, so is
any function of the dimension. �

Remark 2.9. The Euler Characteristic can also be easily stated in the language of
homology, where it agrees with the usual notion of triangulating a two-dimensional
surface.

3. Mayer–Vietoris

Definition 3.1. For the rest of the paper, U and V are open sets whose union
forms a manifold. Define the restriction map res : Hk(U ∪ V ) → Hk(U) ⊕Hk(V )
by res(ω) ≡ (ω

∣∣
U
, ω
∣∣
V

).

Definition 3.2. Define the difference map diff : Hk(U)⊕Hk(V )→ Hk(U ∩ V ) by
diff(ω, η) ≡ ω − η.
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Definition 3.3. Define the coboundary map cobd : Hk(U ∩V )→ Hk+1(U ∪V ) by

cobd(ω)p ≡
{
d(α)p : p ∈ U
d(β)p : p ∈ V

where α is a k-form on U , β is a k-form on V , and α− β = ω on U ∩ V . Since ω is
closed, dω = 0 = dα − dβ on U ∩ V . Notice, this map is obtained by extending ω
to the whole manifold, then applying the coboundary map.

Proposition 3.4. The coboundary map is well defined up to exact forms.

Definition 3.5. We say a sequence X1
f1−→ X2

f2−→ X3 · · · is exact if im(fn) =
ker(fn+1) for all n.

Theorem 3.6. The sequence Hk(U ∪ V )
res−−→ Hk(U) ⊕ Hk(V )

diff−−−→ Hk(U ∩ V )
is exact.

Proof. Let ω ∈ Hk(U ∪V ). Then res(ω) = (ω|U , ω|V ) and therefore, diff(res(ω)) =
diff(ω|U , ω|V ) = 0. Thus, im(res) ⊂ ker(diff).

Let (ω, η) ∈ ker(diff), so ω = η on U ∩ V . Then define

αp =

{
ωp : p ∈ U
ηp : p ∈ V

Then res(α) = (ω, η) so im(res) ⊃ ker(diff). �

Theorem 3.7. The sequence Hk(U)⊕Hk(V )
diff−−−→ Hk(U ∩V )

cobd−−−→ Hk+1(U ∪V )
is exact.

Proof. Let (ω, η) ∈ Hk(U)⊕Hk(V ). Then cobd(diff(ω, η)) = cobd(ω − η). We can
choose α = ω, β = η with α, β as in definition 3.3. Therefore,

cobd(ω)p =

{
d(ω)p : p ∈ U
d(η)p : p ∈ V

But since ω and η are closed, cobd(ω) = 0. Thus, im(diff) ⊂ ker(cobd).
Next, let ω ∈ ker(cobd) and find α, β as in defintion 3.3. Since ω ∈ ker(cobd),

dα = 0 and dβ = 0. Therefore, (α, β) ∈ Hk(U)⊕Hk(V ). Then diff(α, β) = α−β =
ω by their defining property in definition 3.3. Thus, im(diff) ⊃ ker(cobd). �

Theorem 3.8. The sequence Hk(U ∩ V )
cobd−−−→ Hk+1(U ∪ V )

res−−→ Hk+1(U) ⊕
Hk+1(V ) is exact.

Proof. Let ω ∈ U∩V , α, β as in definition 3.3. Then res(cobd(ω)) = (dα, dβ) which
is exact by definition. Thus, im(cobd) ⊂ ker(res).

Finally, let ω ∈ ker(res). Then ω = d(α) on U for some α and ω = d(β) on V
for some β. Then α− β ∈ Hk(U ∩ V ). By definition,

cobd(α− β)p =

{
d(α)p : p ∈ U
d(β)p : p ∈ V

But d(α) = ω|U and d(β) = ω|V so im(cobd) ⊃ ker(res). �

Definition 3.9. The Mayer–Vietoris sequence is the sequence

0→ H0(U ∪ V )→ H0(U)⊕H0(V )→ H0(U ∩ V )

→ H1(U ∪ V )→ H1(U)⊕H0(V )→ H1(U ∩ V ) · · ·
Theorem 3.10. The Mayer–Vietoris sequence is exact.
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4. Applications

Example 4.1. The cohomology of a ball is trivial. In particular, dimHk(Rn) =
δ(k, 0).

Proof. Just apply the Poincaré lemma for k-forms where k 6= 0. When k = 0,
notice that constant functions are closed. �

Example 4.2. If Sn is the n-sphere, dimHk(Sn) = δ(n, k).

Proof. We proceed by induction on n and leave the base case to the reader. Let
U = {(x, y, z, . . .) ∈ Sn : x < 1

2} and V = {(x, y, z, . . .) ∈ Sn : x > − 1
2} so the

intersection U∩V is smoothly homotopy equivalent to the Sn−1 sphere and U , V are
smoothly homotopy equivalent to the n− 1 ball. Then · · · → 0→ Hk−1(Sn−1)→
Hk(Sn)→ 0→ · · · is exact . By induction, dimHk(Sn) = δ(n, k). �

Example 4.3. If Tn = (S1)n, then dimHk(Tn) =
(
n
k

)
.

Proof. Again we use induction on n. Let U = {(θ1, θ2, θ3, . . .) ∈ Tn : θ1 ∈ ( 1
6 ,

5
6 )}

and V = {(θ1, θ2, θ3, . . .) ∈ Tn : θ1 ∈ ( 4
6 ,

2
6 )} so the intersection U ∩ V is smoothly

homotopy equivalent to Tn−1
∐
Tn−1 and U , V are smoothly homotopy equiv-

alent to Tn−1. The base case is covered by S1 in example 4.2. Notice that

Hk(U) ⊕ Hk(V )
diff−−−→ Hk(U ∩ V ) induces a map Hk(U) × {0} → Hk(U ∩ V )

injectively. Furthermore, by symmetry we can take the opposite map on V to get

that dim ker(diff) = dim im(diff) =
(
n−1
k

)
if Hk(U) ⊕ Hk(V )

diff−−−→ Hk(U ∩ V ).
Thus,

Hk−1(Tn−1)2 ∼= R2(n−1
k−1)

dim im=(n−1
k−1)

dimker=(n−1
k−1)−−−−−−−−−→ Hk−1(Tn−1)2 ∼= R2(n−1

k−1)

dim im=(n−1
k−1)

dimker=(n−1
k−1)−−−−−−−−−→

Hk(Tn)

dim im=(n−1
k )

dimker=(n−1
k−1)−−−−−−−−−→ Hk(Tn−1)2 ∼= R2(n−1

k )

dim im=(n−1
k )

dimker=(n−1
k )

−−−−−−−−−→ Hk(Tn−1)2,

so dimHk(Tn) =
(
n−1
k−1
)

+
(
n−1
k

)
=
(
n
k

)
. �

5. Poincaré Duality

Definition 5.1. We denote by ΩkC(M) = ΩkC the space of k-forms with compact
support. The exterior derivative induces a map on this subspace. Then the cochain
complex

Ω0
C

d−→ Ω1
C

d−→ Ω2
C

d−→ · · ·

gives rise to the compactly supported cohomology, denoted Hk
C(M).

Next, we state a simple but helpful lemma.

Lemma 5.2 (Five Lemma). Suppose, in the following commutative diagram, that
each set is an abelian group, that each map is a homomorphism, that the rows form
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exact sequences and that j, k,m and n are isomorphisms.

A
f //

j

��

B
g //

k

��

C
h //

l

��

D
i //

m

��

E

n

��
A′

o // B′
p // C ′

q // D′
r // E′

Then l is an isomorphism.

Proof. First, suppose c ∈ ker(l). Then m(h(c)) = q(l(c)) = 0 because the diagram
commutes. Because m is injective, we have h(c) = 0. Since the top row is exact,
ker(h) = im(g) so there exists b ∈ B such that g(b) = c. Again, the diagram
commutes so l(g(b)) = p(k(b)) = 0. Since the bottom row is exact, ker(p) =im(o)
so there exists a′ ∈ A′ such that o(a′) = k(b). Because j is surjective, there exists
a ∈ A such that j(a) = a′. Then o(j(a)) = k(f(a)) = k(b) but because k is an
isomorphism, f(a) = b. Then 0 = g(f(a)) = g(b) = c = 0 so l is injective.

Second, let c′ ∈ C ′. Then because m is surjective, there exists d ∈ D such that
q(c′) = m(d). Thus, r(q(c′)) = r(m(d)) = n(i(d)) using commutativity. Because
the bottom row is exact, im(q) = ker(r) and therefore r(q(c′)) = 0 = n(i(d))
applying the previous line. Since n is injective, i(d) = 0. Because the top row
is exact, ker(i) =im(h) and therefore there exists c ∈ C such that h(c) = d. By
linearity and the defining property of d we have, q(c′ − l(c)) = q(c′) − q(l(c)) =
m(d) − m(h(c)) = 0. Because the bottom row is exact ker(q) =im(p) so there
exists b′ ∈ B′ such that p(b′) = c′ − l(c). Since k is surjective, there exists b ∈ B
such that k(b) = b′. Since the diagram commutes, l(g(b)) = p(k(b)) = c′ − l(c) so
l(g(b) + c) = c′ proving l is surjective. �

We define a map
∫

: Hk(M) ⊕ Hn−k
C (M) → R by

∫
(ω, η) =

∫
M
ω ∧ η. Since

η is compactly supported,
∫

(ω, η) is finite. Clearly,
∫

(ω, ·) ≡ IM (ω)(·) defines a

linear map IM : Hk(M) → (Hn−k
C )∗. Although the map IM implicitly depends on

k, we suppress this dependence for the sake of cleanliness. The main theorem of
this section states that for a broad class of spaces, IM is an isomorphism so, in
particular, Hk(M) ∼= Hn−K

C (M) and dimHk(M) = dimHn−k
C (M).

Lemma 5.3. If U ∪ V is orientable and if IU , IV and IU∩V are isomorphisms for
all k, so is IU∪V .

Proof. We use Mayer–Vietoris and the five lemma. We will check that the following
diagram commutes up to sign with an appropriate choice of maps.

// Hk−1(U ∩ V ) //

IU∩V

��

Hk(U ∪ V ) //

IU∪V

��

Hk(U)⊕Hk(V ) //

IU⊕IV

��
// Hn−k+1

C (U ∩ V )∗ // Hn−k
C (U ∪ V )∗ // Hn−k(U)∗C ⊕Hk(V )∗C

//

The top line is the Mayer–Vietoris sequence. Define sum : Hk
C(U) ⊕ Hk

C(V ) →
Hk
C(U ∪ V ) by sum(ω, η) ≡ ω + η. Define the inclusion map inc : Hk

C(U ∩ V ) →
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Hk
C(U)⊕Hk

C(V ) by inc(ω) ≡ (ω
∣∣
U
,−ω

∣∣
V

). We can take the dual to get a sequence
in the opposite direction. The proof that this sequence is exact is similar to the
proof of Mayer–Vietoris and is omitted.

First, if f, g, η and α are defined as in definition 3.3 and β ∈ Hn−k
C (U ∪V ) then,

recalling that df = 0 outside of U ∩ V ,

IU∪V (cobd(ω))(β) =

∫
U∪V

d(fη − gα) ∧ β =

∫
U∩V

dfω ∧ β = ±d∗(IU∩V (ω))(β).

Second, if (α, β) ∈ Hn−k
C (U)⊕Hn−k

C (V ) and ω ∈ Hk(U ∪ V ) then,

IU ⊕ IV (res(ω))(α, β) = IU ⊕ IV (ω
∣∣
U
, ω
∣∣
V

)(α, β) =

∫
U

ω ∧ α+

∫
V

ω ∧ β

=

∫
U∪V

ω ∧ (α+ β) = sum∗(IU∪V (ω))(α, β),

again using that α, β only have support on U and V respectively. Lastly, if (ω, η) ∈
Hk(U)⊕Hk(V ) and α ∈ Hn−k

C (U ∩ V ) then

IU∩V (diff(ω, η))(α) =

∫
U∩V

(ω − η) ∧ α = inc∗(IU ⊕ IV (ω, η))(α, β).

By the five lemma, IU∪V is an isomorphism. �

Definition 5.4. An open cover {Uα} of a manifold M is a good cover if every finite
intersection U1 ∩ · · · ∩ Um is contractible.

Theorem 5.5 (Poincaré Duality). If a manifold M is orientable and has a finite
good cover, then IM is an isomorphism.

Proof. We proceed by induction. When M = Rn, then dimHk(Rn) = δ(0, k).
Notice that constant functions are not in Ω0

C(Rn) so dimH0
C(Rn) = 0. To check

that dimHn
C(Rn) = 1, we notice that

∫
: Ωk → R is nonzero but

∫
K
d(α) =

∫
∂K

α =

0 by Stokes. Furthermore, IRn(1)(α) =
∫
Rn α so IRn(1) = id 6= 0 which proves that

the map is non-degenerate and so an isomorphism.
Next, if M has a finite good cover, we proceed by induction on the size of the

good cover using lemma 5.3. Namely, if Poincaré duality holds for any manifold
covered by a good cover of size m−1 and if {U1, . . . Um} is a good cover of M , then
Poincaré duality holds for Um ∼= Rn, it holds for U1 ∪ · · · ∪ Um−1 by assumption
and it holds for ∩Ui ∼= Rn. By lemma 5.3, it holds for M . �

Remark 5.6. The theorem holds even without assuming a finite good cover, but
it is most easily and appropriately proven with more advanced technology. One
can show that any (Hausdorff, second-countable) manifold has a good cover by
taking a neighborhood of each point which is convex in some chart, then noting
that the intersection of two convex subsets of Rn is convex and so contractible by
the multiplication map. By shrinking the size of each neighborhood, we can ensure
that any other element of the good cover lies in a compatible chart.1

1This proof that every manifold has a good cover comes from [6]. For the most accessible proof

that Poincaré duality for finite good covers implies Poincaré duality for infinite good covers comes

from [7] pages 197-200. More advanced proofs involving a slightly different formulation can be
found in, for instance, [8].
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