Skip to main content

New answers tagged

1 vote

Evaluate integral $\int_{-\infty}^\infty\Gamma(1+ix)\Gamma(1-ix)~dx$

$$I(a)=\int_{-\infty}^\infty\Gamma(1+iax)\Gamma(1-iax)\,dx$$ $$\Gamma(iax)\Gamma(1-iax)=\frac{\pi}{\sin(\pi iax)}$$ $$\Gamma(1+iax)\Gamma(1-iax)=a\pi\frac{x}{\sinh(\pi ax)}$$ $$I(a)=a\pi\int_{-\infty}^...
Amrut Ayan's user avatar
  • 5,701
2 votes

Evaluating $\int_0^1 \frac{z \log ^2\left(\sqrt{z^2+1}-1\right)}{\sqrt{1-z^2}} \, dz$

Substitute $x^2=\sin 2\theta$ to remove square roots \begin{align} I=& \int_0^1 \frac{x \log ^2(\sqrt{1+x^2}-1)}{\sqrt{1-x^2}} \, dx\\ =& \ \frac12\int_0^{\pi/2}\ln^2(\cos\theta+\sin\theta-1)(\...
Quanto's user avatar
  • 108k
1 vote

Integral $\int_0^1\frac{\log(1-x)}{\sqrt{x-x^3}}dx$

Solution without special functions excluding the beta function and the gamma function Start with a substitution, $x\rightarrow\frac{1-x}{1+x}$ $$I=\int_0^1\frac{\ln(1-x)}{\sqrt x\sqrt {1-x^2}}dx=\...
polychroma's user avatar
  • 2,850
1 vote

Evaluate $\int_0^\infty \frac{dx}{(x+\sqrt{1+x^2})^2}$

$$\boxed{\int_0^\infty \frac{dx}{(x+\sqrt{1+x^2})^n}=\frac{n}{n^2-1} ; n>1}\tag1$$ Although a more generalized version would be for $m>n>0$, $$\boxed{{\int_0^\infty \frac{x^{n-1}}{(x+\sqrt{1+...
Amrut Ayan's user avatar
  • 5,701
1 vote

Evaluate $\int_0^\infty \frac{dx}{(x+\sqrt{1+x^2})^2}$

Another method is to substitute $x+\sqrt{x^2+1}=t\implies \sqrt{x^2+1}-x=\frac1{t}\implies\mathrm dx=\frac{1+\frac1{t^2}}{2}\mathrm dt$: $$\begin{align}\int_0^\infty\frac{\mathrm dx}{\left(x+\sqrt{x^2+...
Math Guy's user avatar
  • 4,468
3 votes

Sources about Glasser's master theorem

In the paper 'Which functions preserve Cauchy laws" Proceedings of the AMS 1977 Vol 37 pages 277- 286, yours truly proved the following : if $\mu$ is a singular bounded measure on $R$ then $$f(x)=...
Letac Gérard's user avatar
4 votes

Integral $\int_0^\infty \frac{|\sin\sqrt{qx}|-|\sin\sqrt{px}|}{x}dx$

A Frullani integral in disguise \begin{align} I=&\int_{0}^{\infty} \frac{\left\vert\sin\sqrt{qx}\right\vert- \left\vert\sin\sqrt{px}\right\vert}{x}\overset{\sqrt x\to x}{dx}\\ =&\ 2 \int_{0}^{...
Quanto's user avatar
  • 108k
1 vote

Integral evaluation of delta function with Gaussian

If $\delta$ is defined as a distribution, then the object (you wrote it as an integral) is ill-defined. This is because the product of distributions is not defined in general. Mathematica might be ...
Mark Viola's user avatar
  • 183k
4 votes

Integral evaluation of delta function with Gaussian

The use of the symbol $\delta(x)$ by physicists is a calamity, since $ \delta$ is not a function but a measure which should be denoted by $\delta_a(dx)$ meaning $\int_R h(x)\delta_a(dx) =h(a)$ for a ...
Letac Gérard's user avatar
3 votes

Integral evaluation of delta function with Gaussian

If you make the problem smoother and, since the Dirichlet kernel converges to a Dirac delta function, use $$\delta(\tau)=\frac 2 \pi\,\,\underset{a\to \infty }{\text{limit }}\frac{\sin (a \tau )}{\...
Claude Leibovici's user avatar
4 votes

Integrals of trignometric functions $\cot^{-1}\sqrt{1+\csc{\theta}}$ and $\csc^{-1}\sqrt{1+\cot{\theta}}$

For the first integral, substitute $\csc\theta=\frac{1+\sin^2t}{1-\sin^2t}$ \begin{align}\int_0^{{\pi}/{2}}\cot^{-1} &{\sqrt{1+\csc{\theta}}} \ {d\theta} =\int_0^{\pi/2} \int_0^{\pi/4}\frac{\sqrt{...
Quanto's user avatar
  • 108k
1 vote

Need help with $\int_0^\infty\frac{\log(1+x)}{\left(1+x^2\right)\,\left(1+x^3\right)}dx$

\begin{align} &\int_0^\infty\frac{\ln(1+x)}{\left(1+x^2\right)\,\left(1+x^3\right)}dx\\ =& \int_0^1 \frac{\ln{(1+x)}}{1+x^2} dx- \int_0^1 \frac{x^3 \ln{x}}{(1+x^2)(1+x^3)}\overset{ibp}{dx}\\ =...
Quanto's user avatar
  • 108k
0 votes

Proof of $\int_0^\infty \left(\frac{\sin x}{x}\right)^2 \mathrm dx=\frac{\pi}{2}.$

Noting $$ \mathcal{L}\{t\}(x)=\frac1{x^2},\mathcal{L}\{\sin^2(x)\}(t)=\frac{2}{t(t^2+4)} $$ one has $$\int_0^{\infty} {\sin^2(x) \over x^2}\,dx=\int_0^{\infty} \sin^2(x)\mathcal{L}\{t\}(x) \,dx=\int_0^...
xpaul's user avatar
  • 46.6k
0 votes

Proof of $\int_0^\infty \left(\frac{\sin x}{x}\right)^2 \mathrm dx=\frac{\pi}{2}.$

Notice that $$\frac{\sin^2 x}{x^2}=\frac{1}{2}\Re\frac{1-e^{2iz}}{z^2}:=\Re f(z).$$ Thus, we try to do the integral $$\int_{C+D+A+B:=\gamma}f(z)dz,$$ where the contour is Let's first consider $\int_C ...
X K H's user avatar
  • 2,564
5 votes
Accepted

Alternating series of Laplace transforms is zero implies that Laplace transform is zero?

Yes, if that summation is exactly zero for all $r$, then we shall have $F=0$ being the zero function. To prove this, it helps to consider the alternating summation as another sort of transform between ...
Jade Vanadium's user avatar
3 votes
Accepted

Evaluating $\int_{0}^{\infty}e^{-\mu\lvert u-s \rvert-\lambda s}ds$

When you integrate $\int e^{ks}ds = \frac1ke^{ks}+c$, that is how you get the factors on the denominator, i.e. \begin{align*} \int_0^\infty e^{-\mu|u-s|-\lambda s}ds &= e^{-\mu u}\int_0^u e^{(\mu ...
Ramashalanka's user avatar
  • 1,073
1 vote

Compute: $\int_0^{\infty}e^{-\pi x}\text{Ei}(x)dx$

OMG, nevermind, I just realized something. Notice, by definition of Ei(x), $$\frac{1}{a}\lim_{x\rightarrow0}(\text{Ei}((a-1)x)-\text{Ei}(x))=\frac{1}{a}\int_{0}^{\infty}\frac{e^{-(a-1)x}-e^{-x}}{x}dx$$...
Silver's user avatar
  • 1,501
1 vote

Integral: $\int_0^\infty \tan^{-1}\left(\frac{2ax}{x^2+c^2} \right)\sin(bx) \; dx$

Let $s_{\pm}=\sqrt{p^2+1}\pm p$ and note that $$\int_0^\infty \sin bx \ \tan^{-1}\frac{2ax}{x^2+c^2}\ dx \overset{x\to c x}=c I(\frac ac, bc) $$ where \begin{align} I(p,q)=& \int_0^\infty \sin qx \...
Quanto's user avatar
  • 108k
0 votes

Seemingly Do-able Gaussian

$$\int _{-\infty }^{\infty }\int _{-\infty }^{\infty }\exp \left(\sqrt{x^2+y^2}\right) \exp \left(-\frac{1}{2} \left(\frac{x^2}{a^2}+\frac{y^2}{b^2}\right)\right)dydx=\\\int _0^{\infty }\int _{-\pi }^{...
Mariusz Iwaniuk's user avatar
-1 votes

Seemingly Do-able Gaussian

Define $$F(a,b)=\int_{\Bbb R^2}\exp\left(x^2+y^2\right)\exp\left(-\frac{1}{2}\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}\right)\right)\mathrm dx\mathrm dy$$ Everything is separable, $$F(a,b)=\int_{y=-\infty}...
K.defaoite's user avatar
  • 12.9k
0 votes

Juantheron-like integral

$$\int_0^{\infty } \frac{1}{\left(1+x^2\right) (1+\tan (x))} \, dx=\\\int_0^{\infty } \left(\mathcal{L}_x\left[\frac{1}{1+\tan (x)}\right](t)\right) \left(\mathcal{L}_x^{-1}\left[\frac{1}{1+x^2}\right]...
Mariusz Iwaniuk's user avatar
0 votes

Proving the sum of two independent Cauchy Random Variables is Cauchy

I will try to show a detailed proof of the above $(4)$ to $(5)$ (for those who does not understand of course). I am not able to comment the above reply so I will reply from here. $$J(m)=\int_{0}^\...
arofenitra's user avatar
2 votes

Generalizing $\int_{0}^{\infty} \frac{1}{( 1+x^2) ( 1+(2+x)^2) }\text{d}x+\int_{0}^{1}\frac1{(1+x^2)( 1+(2-x)^2)}\text{d}x=\frac{\pi}{8} .$

Too long for a comment You have been very lucky to use $a=2$ for the more general case of $$A=\int_{0}^{\infty} \frac{dx}{( 1+x^2) ( 1+(a+x)^2) }+\int_{0}^{1}\frac{dx}{(1+x^2)( 1+(a-x)^2)}$$ The ...
Claude Leibovici's user avatar

Top 50 recent answers are included