Skip to main content

All Questions

Filter by
Sorted by
Tagged with
2 votes
4 answers
146 views

Solve the equation $\left(\frac{1+\sqrt{1-x^2}}{2}\right)^{\sqrt{1-x}} = (\sqrt{1-x})^{\sqrt{1-x}+\sqrt{1+x}}$

Solve in $\mathbb{R}$: $ \left(\frac{1+\sqrt{1-x^2}}{2}\right)^{\sqrt{1-x}} = (\sqrt{1-x})^{\sqrt{1-x}+\sqrt{1+x}} $ My approach: Let $a = \sqrt{1-x}$ and $b = \sqrt{1+x}$ so $a^2 + b^2 = 2$. The ...
math.enthusiast9's user avatar
4 votes
1 answer
73 views

Proof of positivity of $~ x+\sqrt{x^2+1} ~$ of $~\operatorname{arsinh}(x)=\operatorname{arcsinh}(x)=\sinh^{-1}(x)= \ln \left( x+\sqrt{x^2+1}\right)$

Proof of positivity of $~ x+\sqrt{x^2+1} ~$ I found this formula appears at $~ \operatorname{arsinh}(x)= \ln \left( x+\sqrt{x^2+1}\right)~$ So, of course this argument inside the natural log function ...
electrical apprentice's user avatar
0 votes
1 answer
117 views

Solve the equation $\sqrt{x^{2}+ 8}- \sqrt{x^{2}+ 3}+ 2x^{3}- x- 2= 0$ .

Solve the equation $$\sqrt{x^{2}+ 8}- \sqrt{x^{2}+ 3}+ 2x^{3}- x- 2= 0$$ My solution is $$x+ 2- 2x^{3}= \sqrt{x^{2}+ 8}- \sqrt{x^{2}+ 3}= \frac{5}{\sqrt{x^{2}+ 8}+ \sqrt{x^{2}+ 3}}\leq \frac{5}{\...
user avatar