Skip to main content

All Questions

Filter by
Sorted by
Tagged with
7 votes
5 answers
487 views

How to evaluate $\int_0^1 \frac{\arctan(x)}{x} \ln^2(1 - x) \, dx$

Question How to evaluate $$\int_0^1 \frac{\arctan(x)}{x} \ln^2(1 - x) \, dx$$ My attempt \begin{align} \int_0^1 \frac{\arctan(x)}{x} \ln^2(1 - x) \, dx &= \int_0^1 \int_0^1 \frac{\ln^2(1 - x)}{...
Martin.s's user avatar
  • 5,957
33 votes
7 answers
3k views

Evaluating $\int_0^1 \frac{\log x \log \left(1-x^4 \right)}{1+x^2}dx$

I am trying to prove that \begin{equation} \int_{0}^{1}\frac{\log\left(x\right) \log\left(\,{1 - x^{4}}\,\right)}{1 + x^{2}} \,\mathrm{d}x = \frac{\pi^{3}}{16} - 3\mathrm{G}\log\left(2\right) \tag{1} \...
Shobhit Bhatnagar's user avatar