Skip to main content

All Questions

Filter by
Sorted by
Tagged with
0 votes
4 answers
237 views

Integrating $\int_0^1 \frac{\ln x \ln (1+x) \ln(1-x)}{x^{\frac12}} \,dx$

$$\int_0^1 \frac{\ln x \ln (1+x) \ln(1-x)}{x^{\frac12}} \,dx$$ Now I have seen a similar integral here, I am unable to deal with the $x^{\frac12}$ term in the denominator. Here's one idea, $$\int_0^1x^...
Amrut Ayan's user avatar
  • 5,691
4 votes
2 answers
456 views

Harmonic sum with Dirichlet eta tail

The following problem is proposed by Cornel Valean: $$\sum_{n=1}^{\infty} \frac{H_n}{2n+1}\left(\eta(2)- \overline{H}_n^{(2)}\right)$$ $$=2 G^2-2\ln(2) \pi G+\ln^2(2)\frac{\pi ^2}{6} +\frac{53}{1440}\...
Ali Shadhar's user avatar
  • 26.6k
17 votes
3 answers
672 views

Evaluating $\int_0^{\frac{\pi}{2}}x^2 \cot x\ln(1-\sin x)\mathrm{d}x$

I was able to find $$\int_0^{\frac{\pi}{2}}x^2 \cot x\ln(1-\sin x)\mathrm{d}x=-\frac14\sum_{n=1}^\infty\frac{4^n}{{2n\choose n}}\frac{H_{2n}}{n^3}$$ $$=5\operatorname{Li}_4\left(\frac12\right)-\frac{...
Ali Shadhar's user avatar
  • 26.6k
3 votes
4 answers
226 views

How to prove this series identity $\sum_{n=1}^{\infty}\left(\frac{1}{n}\sum_{k=n+1}^{\infty}\frac{1}{k^3}\right)=\frac{\pi^{4}}{360}$?

I tried to prove this identity seemingly related to special functions which has been verified via Mathematica without a proof: $$\sum_{n=1}^{\infty}\left(\frac{1}{n}\sum_{k=n+1}^{\infty}\frac{1}{k^3}\...
Shiningale's user avatar
7 votes
4 answers
561 views

Prove series form of fractional harmonic numbers

Let $H_\alpha$ be the $\alpha$th fractional harmonic number so that $$ H_\alpha = \int_0^1 \frac{1-x^\alpha}{1-x}\,\text dx. $$ I want to directly show $$ H_\alpha = \sum_{k=1}^\infty \frac{\alpha}{k(...
alfalfa's user avatar
  • 1,509
21 votes
1 answer
1k views

Calculate $\int_0^1\frac{\log^2(1+x)\log(x)\log(1-x)}{1-x}dx$

Prove that: $$ I=\int_0^1\frac{\log^2(1+x)\log(x)\log(1-x)}{1-x}dx=\frac{7}{2}\zeta(3){\log^22}-\frac{\pi^2}{6}{\log^32}-\frac{\pi^2}{2}\zeta(3)+{6}\zeta(5)-\frac{\pi^4}{48}\ln2 $$ Using ...
user178256's user avatar
  • 5,617
25 votes
5 answers
1k views

Other challenging logarithmic integral $\int_0^1 \frac{\log^2(x)\log(1-x)\log(1+x)}{x}dx$

How can we prove that: $$\int_0^1\frac{\log^2(x)\log(1-x)\log(1+x)}{x}dx=\frac{\pi^2}{8}\zeta(3)-\frac{27}{16}\zeta(5) $$
user178256's user avatar
  • 5,617
14 votes
2 answers
2k views

Definite Dilogarithm integral $\int^1_0 \frac{\operatorname{Li}_2^2(x)}{x}\, dx $

Prove the following $$\int^1_0 \frac{\operatorname{Li}_2^2(x)}{x}\, dx = -3\zeta(5)+\pi^2 \frac{\zeta(3)}{3}$$ where $$\operatorname{Li}^2_2(x) =\left(\int^x_0 \frac{\log(1-t)}{t}\,dt \right)^2$$
Zaid Alyafeai's user avatar