I want to prove $\sup(A\cup B)=\max\{\sup(A),\sup(B)\}$, where $A,B\subseteq \mathbb R$$A,B\subset \mathbb R$ are non-empty and bounded sets from above. I have reviewed similar questions and answers, but I intended to prove directly using the following definition of least upper bound:
$\sup ( A) \in \mathbb R$ and $A\subseteq \mathbb R$ if
- $\forall a\in A$, $a \leq \sup( A)$,
- $\forall \varepsilon >0$, $\exists b \in A$ such that $\sup( A)-\varepsilon<b$.
Here's my proof:
- We know $A \cup B=\{x \mid x\in A \text{ or }x\in B \} $,
- $\forall a \in A$, $a \leq \sup(A) $ and $\forall b \in B$, $b \leq \sup(B) $, thus $\forall a \in A$ and $\forall b \in B$, $a,b\leq \max\{\sup(A),\sup(B)\}$.
- $\forall \varepsilon>0 $, $\exists k_A \in A$ s.t. $\sup( A)-\varepsilon <k_A$ and $\exists k_B \in B$ s.t. $\sup( B)-\varepsilon <k_B$. $k_A\in A\cup B$, and $\sup(A)\geq \sup(B)$ implies $\sup(A)-\varepsilon=\max\{\sup(A),\sup(B)\}-\varepsilon <k_A$. After considering vice versa, we can write, $\exists k\in A\cup B$, $\max\{\sup(A),\sup(B)\}-\varepsilon<k$.
Since both properties are satisfied, we can conclude that $\sup(A\cup B)=\max\{\sup(A),\sup(B)\}$.
Question: Is this proof correct? I have some bad feelings regarding my 3rd argument. Thank you!