Skip to main content
edited title
Link
Anne Bauval
  • 44.1k
  • 8
  • 32
  • 71

Evaluate Definite Integral Using Limit$\int_0^3 x{\sqrt {3-x}}\;dx $ using Riemann sums

edited body
Source Link
aki
  • 71
  • 4

So, I was asked to do this integral using the limit method (or the Riemann Sum)

$$\int_0^3 x{\sqrt {3-x}}\;dx $$

And, I do it like this:

$$\int_0^3 x{\sqrt {3-x}}\;dx $$

Firstly, I determine the $\Delta x$ and $c_i$

$$\Delta x = \frac{b-a}{n}$$

$$\Delta x = \frac{3-0}{n}$$

$$\Delta x = \frac{3}{n}$$

Using the right end point :

$$c_i=a+\Delta xi$$

$$c_i=0+\frac{3}{n}i$$

$$c_i=\frac{3i}{n}$$

Then, evaluating the Integral using limit:

$$\lim_{x\to\infty}\;\sum_{i=1}^n\;f(c_i)\Delta x $$$$\lim_{n\to\infty}\;\sum_{i=1}^n\;f(c_i)\Delta x $$

$$\lim_{x\to\infty}\;\sum_{i=1}^n\;f\left(\frac{3i}{n}\right)\left(\frac{3}{n}\right)$$$$\lim_{n\to\infty}\;\sum_{i=1}^n\;f\left(\frac{3i}{n}\right)\left(\frac{3}{n}\right)$$

$$\lim_{x\to\infty}\;\sum_{i=1}^n\;\left(\frac{3i}{n}{\sqrt {3-\frac{3i}{n}}}\right)\;\left(\frac{3}{n}\right)$$$$\lim_{n\to\infty}\;\sum_{i=1}^n\;\left(\frac{3i}{n}{\sqrt {3-\frac{3i}{n}}}\right)\;\left(\frac{3}{n}\right)$$

$$\lim_{x\to\infty}\;\left(\frac{9 \sqrt {3}}{n^\frac {5}{2}}\right)\;\sum_{i=1}^n\;i{\sqrt {n-i}}$$$$\lim_{n\to\infty}\;\left(\frac{9 \sqrt {3}}{n^\frac {5}{2}}\right)\;\sum_{i=1}^n\;i{\sqrt {n-i}}$$

And, now I'm stuck here. Is there a way to do a summation that has a square root in it?

notes : if you find error in my calculation please let me know

So, I was asked to do this integral using the limit method (or the Riemann Sum)

$$\int_0^3 x{\sqrt {3-x}}\;dx $$

And, I do it like this:

$$\int_0^3 x{\sqrt {3-x}}\;dx $$

Firstly, I determine the $\Delta x$ and $c_i$

$$\Delta x = \frac{b-a}{n}$$

$$\Delta x = \frac{3-0}{n}$$

$$\Delta x = \frac{3}{n}$$

Using the right end point :

$$c_i=a+\Delta xi$$

$$c_i=0+\frac{3}{n}i$$

$$c_i=\frac{3i}{n}$$

Then, evaluating the Integral using limit:

$$\lim_{x\to\infty}\;\sum_{i=1}^n\;f(c_i)\Delta x $$

$$\lim_{x\to\infty}\;\sum_{i=1}^n\;f\left(\frac{3i}{n}\right)\left(\frac{3}{n}\right)$$

$$\lim_{x\to\infty}\;\sum_{i=1}^n\;\left(\frac{3i}{n}{\sqrt {3-\frac{3i}{n}}}\right)\;\left(\frac{3}{n}\right)$$

$$\lim_{x\to\infty}\;\left(\frac{9 \sqrt {3}}{n^\frac {5}{2}}\right)\;\sum_{i=1}^n\;i{\sqrt {n-i}}$$

And, now I'm stuck here. Is there a way to do a summation that has a square root in it?

notes : if you find error in my calculation please let me know

So, I was asked to do this integral using the limit method (or the Riemann Sum)

$$\int_0^3 x{\sqrt {3-x}}\;dx $$

And, I do it like this:

$$\int_0^3 x{\sqrt {3-x}}\;dx $$

Firstly, I determine the $\Delta x$ and $c_i$

$$\Delta x = \frac{b-a}{n}$$

$$\Delta x = \frac{3-0}{n}$$

$$\Delta x = \frac{3}{n}$$

Using the right end point :

$$c_i=a+\Delta xi$$

$$c_i=0+\frac{3}{n}i$$

$$c_i=\frac{3i}{n}$$

Then, evaluating the Integral using limit:

$$\lim_{n\to\infty}\;\sum_{i=1}^n\;f(c_i)\Delta x $$

$$\lim_{n\to\infty}\;\sum_{i=1}^n\;f\left(\frac{3i}{n}\right)\left(\frac{3}{n}\right)$$

$$\lim_{n\to\infty}\;\sum_{i=1}^n\;\left(\frac{3i}{n}{\sqrt {3-\frac{3i}{n}}}\right)\;\left(\frac{3}{n}\right)$$

$$\lim_{n\to\infty}\;\left(\frac{9 \sqrt {3}}{n^\frac {5}{2}}\right)\;\sum_{i=1}^n\;i{\sqrt {n-i}}$$

And, now I'm stuck here. Is there a way to do a summation that has a square root in it?

notes : if you find error in my calculation please let me know

Source Link
aki
  • 71
  • 4

Evaluate Definite Integral Using Limit

So, I was asked to do this integral using the limit method (or the Riemann Sum)

$$\int_0^3 x{\sqrt {3-x}}\;dx $$

And, I do it like this:

$$\int_0^3 x{\sqrt {3-x}}\;dx $$

Firstly, I determine the $\Delta x$ and $c_i$

$$\Delta x = \frac{b-a}{n}$$

$$\Delta x = \frac{3-0}{n}$$

$$\Delta x = \frac{3}{n}$$

Using the right end point :

$$c_i=a+\Delta xi$$

$$c_i=0+\frac{3}{n}i$$

$$c_i=\frac{3i}{n}$$

Then, evaluating the Integral using limit:

$$\lim_{x\to\infty}\;\sum_{i=1}^n\;f(c_i)\Delta x $$

$$\lim_{x\to\infty}\;\sum_{i=1}^n\;f\left(\frac{3i}{n}\right)\left(\frac{3}{n}\right)$$

$$\lim_{x\to\infty}\;\sum_{i=1}^n\;\left(\frac{3i}{n}{\sqrt {3-\frac{3i}{n}}}\right)\;\left(\frac{3}{n}\right)$$

$$\lim_{x\to\infty}\;\left(\frac{9 \sqrt {3}}{n^\frac {5}{2}}\right)\;\sum_{i=1}^n\;i{\sqrt {n-i}}$$

And, now I'm stuck here. Is there a way to do a summation that has a square root in it?

notes : if you find error in my calculation please let me know