Skip to main content
added 278 characters in body
Source Link
Michael Burr
  • 33.3k
  • 2
  • 48
  • 79

If the sum that you're interested in is: $$ \sum_{k=1}^{50}\frac{k^2\binom{n}{k}}{\binom{n}{k-1}}, $$ Then, $$ \sum_{k=1}^{50}\frac{k^2\binom{n}{k}}{\binom{n}{k-1}}=\sum_{k=1}^{50}\frac{k^2(n-k+1)}{k}=\sum_{k=1}^{50}k(n-k+1)=(n+1)\sum_{k=1}^{50}k-\sum_{k=1}^{50}k^2. $$ Then, using the formulas $$ \sum_{k=1}^{50}k=\frac{50\cdot 51}{2}=1275 $$ and $$ \sum_{k=1}^{50}k^2=\frac{50\cdot 51\cdot 101}{6}=42925, $$ you will get the negative of the answer at the end of the post (perhaps due to the negative confusion in the discussion above).

If the sum that you're interested in is: $$ \sum_{k=1}^{50}\frac{k^2\binom{n}{k}}{\binom{n}{k-1}}, $$ Then, $$ \sum_{k=1}^{50}\frac{k^2\binom{n}{k}}{\binom{n}{k-1}}=\sum_{k=1}^{50}\frac{k^2(n-k+1)}{k}=\sum_{k=1}^{50}k(n-k+1)=(n+1)\sum_{k=1}^{50}k-\sum_{k=1}^{50}k^2. $$

If the sum that you're interested in is: $$ \sum_{k=1}^{50}\frac{k^2\binom{n}{k}}{\binom{n}{k-1}}, $$ Then, $$ \sum_{k=1}^{50}\frac{k^2\binom{n}{k}}{\binom{n}{k-1}}=\sum_{k=1}^{50}\frac{k^2(n-k+1)}{k}=\sum_{k=1}^{50}k(n-k+1)=(n+1)\sum_{k=1}^{50}k-\sum_{k=1}^{50}k^2. $$ Then, using the formulas $$ \sum_{k=1}^{50}k=\frac{50\cdot 51}{2}=1275 $$ and $$ \sum_{k=1}^{50}k^2=\frac{50\cdot 51\cdot 101}{6}=42925, $$ you will get the negative of the answer at the end of the post (perhaps due to the negative confusion in the discussion above).

Source Link
Michael Burr
  • 33.3k
  • 2
  • 48
  • 79

If the sum that you're interested in is: $$ \sum_{k=1}^{50}\frac{k^2\binom{n}{k}}{\binom{n}{k-1}}, $$ Then, $$ \sum_{k=1}^{50}\frac{k^2\binom{n}{k}}{\binom{n}{k-1}}=\sum_{k=1}^{50}\frac{k^2(n-k+1)}{k}=\sum_{k=1}^{50}k(n-k+1)=(n+1)\sum_{k=1}^{50}k-\sum_{k=1}^{50}k^2. $$