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Lecture 14 — The Structure of Semisimple Lie Algebras III
Prof. Victor Kac Scribe: William Steadman

In this lecture we will prove more consequences of semisimplicity. Then we will prove a theorem
that is used to prove that a Lie algebra is semisimple. Lastly, we will begin to examine examples
of semisimple Lie algebras.

Recall some of the facts that we already know about semisimple Lie algebras. Let g be a finite
dimensional semisimple Lie algebra over I, an algebraically closed field of characteristic 0. Choose
a Cartan subalgebra h and consider the root space decomposition:

g=h <@ga>, [h,b] =0, dimg, = 1.

a€A

We use this decomposition to rewrite the Killing form K as a sum over root spaces. For hi, ho € b
we have:

K(hy,hy) = trg(ad hi)(ad hy) = Y a(h)a(hs). (1)
aEA

We proved in lecture 12 that K|yxp is non-degenerate and creates an isomorphism v : h — h* by
v(h)(h') = K(h,h'). From this isomorphism we define a bilinear form K on h*:

KAL) =Y ol '(M)al@ ™ (A) = Y KA, a)K (A2, a). (2)

aEA aEA

Definition 14.1. [](5 C b* is the Q-span of A. (Note that Q C F since charF = 0.)

Now, a few consequences of semisimplicity:

Theorem 14.1. For g as above, the following are true:

1. A spans h* over F.
2. K(a,8) € Q for all o, 8 € A.

3. K|h5Xh6 s a positive definite symmetric bilinear form with values in Q.

Proof. 1. Suppose A does not span h*, then there exists a non-zero h € b such that a(h) = 0 for
all @« € A. This implies that [k, g,] = 0 for all @ from the definition of root space. It is also true
that [h, h] = 0, as from lecture 12 the Cartan subalgebra b is abelian. Therefore, h is in Z(g). But
g is semisimple, so Z(g) = 0, which is a contradiction.

2. From Equation (2) we have:



K(\A) =) K(\a)? VAeb (3)

aEA
For A € A, K(A\,\) # 0, so:
4 2K\ a))>
— = - A€ A. 4
K Z(K(M))’ ) W
aEA
It follows that ﬁ € Z for A € A because by the string condition 2;((((;‘?) =p—q € Z. This

implies that K(A\,\) € Q for A € A.

2K (a,f)
K(a,o)

3. From part 2, K(«, ) € Q, hence K(\,a) € Q for A € by, a € A. Since by part 1, A spans h*
and the Killing form is non-degenerate on b, its restriction to g is non-degenerate as well.

But since € Z for o, 8 € A and K(a, ) € Q we conclude that K(a, 3) € Q.

Hence by equation (3), K (A, A) >0 for A € hg since it is the sum of rational squares. This proves
that K is positive and semi-definite.

It is a theorem of linear algebra that any non-degenerate positive semi-definite symmetric bilinear
form is positive definite. This proves part 3. ]

Every semisimple algebra is the direct sum of simple algebras. The following exercise shows that
this decomposition is unique up to permutation.

Exercise 14.1. Recall that a semisimple Lie algebra g = @jvzl

sj where s; are simple Lie algebras.
Prove that this decomposition is unique up to permutation of the summands and prove that any

ideal of g is a subsum of this sum.

Proof. We first prove the second part, take any ideal h. M s; is an ideal of the subalgebra s;. s;

is simple so this is either 0 or s;. So h = @évzl(h Ns;) = @, 4 s, which proves the second part.

JEA
For the first part, consider a second decomposition g = @i‘il(tl) Each t; is an ideal and therefore
is the direct sum of a subset of the s;. t; is simple, so it must be the direct sum of exactly one s;.

Similarly, each s; is the direct sum of exactly one ¢;. This proves the first part. O

We will now examine how the decomposition of a Lie algebra corresponds to a decomposition of
its root space.

Let g be the direct sum of two ideals, g = g1 ® go, where both g; are semisimple. Consider for each
of them the root space decomposition. To do this we choose a Cartan subalgebra h; in each g;.

gi=ho| P ga 9=h@<@ga>
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Where b is b1 @ ho and A = Ay L As.

If o« € Ay and € Ay and [ga, 93] = 0, then we have that « + 3 ¢ A and o+ 3 # 0. In other
words,

A = A1 UA,, ()4—|—B¢AUOZf a € A, B € Asg. (5)
Definition 14.2. The set A in a vector space V' is called indecomposable if it cannot be decomposed
into a disjoint union of non-empty subsets A; and A such that equation 5 holds.
With this notion, we can give a simple way to check if a semisimple Lie algebra is simple.
Theorem 14.2. Let g = h @ (B, ca 9a) be a decomposition of a finite dimensional Lie algebra g

into a direct sum of subspaces such that the following properties hold:

1. b is an abelian subalgebra and dimg, =1 for all « € A, whereg, = {a € g|[h,a] = a(h)aVh €
b,

2. [8a,9-a] = Fhq, where hq € b is such that a(h) # 0,

3. b* is spanned by A.

Then g is a semisimple Lie algebra. Moreover if the set A is indecomposable, then g is simple.

Lemma 14.3. Let b be an abelian Lie algebra and 7 its representation in a vector space V' such that
V' has a weight space decomposition: V' = D ,cq- Va, where Vi = {v € V|r(h)v = A(h)v,Vh € h}.

If U C V is a m(h)-invariant subspace, then U = @y« (U N V).

Proof. For u € U, let:

u = ZU)\Z., V), € V)\w Ai 75 )\j. (6)
=1

We will prove that all vy, are in U by induction on n. For the case n =1, vy, =u € U.

For the case, n > 1 we apply 7(h) to both sides:

where h € b is chosen such that A;(h) # Aj(h) for i # j.

From equations 6 and 7, w(h)u — A (h)u = Y 1" 5 (Ai(h) — A1 (h))vy,, where each term is not 0 by
assumption.

By the inductive assumption, vy, € U for i > 2, hence also vy, € U. ]



Now for the proof of the theorem.

Proof. We want to prove that if a is an abelian ideal of g, then a = 0. Note that since a is an
ideal, it is invariant with respect to ad h on g. Hence by the lemma, either g, is in a for some «
or h Na is non-zero. This uses the fact that dimg, = 1. In the first case, [ga, 9—a] = Fha C a,
but [ha,8a] # 0 since a(hy) # 0. So a contains the non-abelian subalgebra Fh, & g,, which is
impossible since a is abelian.

In the second case, where hNa is non-zero, let h € a, h € h, h # 0. By condition 3, h* is spanned by
A, so a(h) # 0 for some o € A. Hence [h, go] = go € a, which again contradicts that a is abelian.
So a=0.

This proves that g is semisimple.
Now the proof of simplicity, given that A is indecomposable.

Since g is semisimple, we have that g = g1 ® g2, where the g; are non-zero ideals. In the contrary
case, by our discussion before Definition 14.2, this implies that A is decomposable. This is a
contradiction, so g is simple. d

The following is an easy method to determine if a set A is indecomposable.

Exercise 14.2. Prove that a finite subset: A C V'\ {0} is an indecomposable set if and only if for
any «, 3 € A, there exists a sequence 1,72 ...7s such that @« = 1, 8 = s and v; + vi+1 € A for
1=1...5s—1.

Also for any A C V '\ {0}, construct its canonical decomposition into a disjoint union of indecom-
posable sets.

Proof. Consider the contrapositive. Suppose A is decomposable. Therefore, A = A; U Ay. Take
some o € A1, B € Ag. No sequence can exist with 73 = « and v, = 8. For at some step in any such
sequence v; € Ay and ;41 € Ag. But v + 2 € A contradicts the definition of a decomposition.

Suppose for some «, § € A no sequence exists. Let A1 be the set of roots for which a sequence with
« exists. Let Ay be the set of roots for which a sequence with o does not exist. This is clearly a
disjoint partition of A. Further A; and Ay are non-empty as o € Ay € Ay. For o’ € Ay, ' € Ay
o+ 3 ¢ A as otherwise one can concatenate the sequence from a = 7, to o/ =5 and from o = 4
to ' = vs41. Thus, Ay LI Ay, where A is indecomposable. Now apply the same argument to Ao,
etc. Since A is a finite set, we obtain the decomposition of A in a finite number of steps. O

14.1 Examples of Semisimple Lie Algebras

Example 14.1. g = sl,(F), where I is an algebraically closed field with characteristic 0. Let the
Cartan subalgebra h be the set of all traceless diagonal matrices. h lies in D,, the space of all
diagonal matrices. Denote by ¢; the following linear function on D: €;(A) = a;, the ith coordinate
of the diagonal of matrix A. The set {¢; | i = 1...n} is clearly a basis of D*. If charF t n, another
basis is {€; — €41,€1 +...+ €, |i=1...n— 1}, since it generates the first basis and has the same
size. h ={a € D|(e1+...+€y)a=0}. Therefore, h* = D*/(e1 + ...+ €,), and {e; — €41 |7 # j}
is a basis for h*.



The root space decomposition of g = sl,,(F) is g = h @, cp o, Where A = {e; —¢;|i # j} and
gsi—ej - Feij~

To prove sl,(F) is semisimple, we check the conditions of theorem 14.2. 1. is clearly true. 2.
[€ij, €ji) = eii — €5, (€i — €5)(eis — €j;) = 2 # 0. This is why F cannot be characteristic 2. 3. When
char { n, the €; — €; span b, so A spans b.

This implies s, (IF) is semisimple for any n # 2 and charF { n. To show it is simple, we prove that
A is indecomposable.

Let o = ¢; — €, B = €5 — €. Using exercise 14.2, let v1 = o, 72 = €j — €5, 73 = 3. This is a string
from o to B as y1 — 2 =€ — €, € A and v2 — 3 = ¢; — ¢ € A. This proves A is indecomposable
and that sl,(IF) is simple.

Exercise 14.3. The above argument fails if charF | n. As sl,(F) contains a non-trivial abelian
ideal, Z(sl,(IF)) since I, € Z(sl,,(F)). How does the argument fail?

Proof. The argument fails because A does not span h*. When charF | n, I, € h and A is still
{ei —¢€; | i # j}. Since (& —€;)(f,) =0, A can’t span bh*. O



