Puslapis iš Vikipedijos, laisvosios enciklopedijos.
Diferencialiniame skaičiavime pagrindinis tikslas yra surasti išvestinę . Šiame sąraše pateikiama daugybės matematinių funkcijų išvestinės. Toliau, f ir g yra diferencijuojamos realaus argumento funkcijos, ir c yra realusis skaičius. Šių formulių pakanka bet kokios elementarios funkcijos išvestinėms surasti.
Tiesiškumas
(
c
f
)
′
=
c
f
′
{\displaystyle \left({cf}\right)'=cf'}
(
f
±
g
)
′
=
f
′
±
g
′
{\displaystyle \left({f\pm g}\right)'=f'\pm g'}
Daugybos taisyklė
(
f
g
)
′
=
f
′
g
+
f
g
′
{\displaystyle \left({fg}\right)'=f'g+fg'}
Dalybos taisyklė
(
f
g
)
′
=
f
′
g
−
f
g
′
g
2
,
g
≠
0
{\displaystyle \left({f \over g}\right)'={f'g-fg' \over g^{2}},\qquad g\neq 0}
Eksponentinės funkcijos taisyklė
(
e
f
(
x
)
)
′
=
f
′
(
x
)
(
e
f
(
x
)
)
{\displaystyle (e^{f(x)})'=f'(x)(e^{f(x)})}
Logaritminės funkcijos taisyklė
(
ln
(
f
(
x
)
)
)
′
=
f
′
(
x
)
f
(
x
)
{\displaystyle (\ln(f(x)))'={f'(x) \over f(x)}}
Sudėtinės funkcijos taisyklė
f
′
(
g
(
x
)
)
=
f
′
(
t
)
g
′
(
x
)
,
t
=
g
(
x
)
{\displaystyle f'(g(x))=f'(t)g'(x),\,t=g(x)}
d
d
x
c
=
0
{\displaystyle {d \over dx}c=0}
d
d
x
x
=
1
{\displaystyle {d \over dx}x=1}
d
d
x
c
x
=
c
{\displaystyle {d \over dx}cx=c}
d
d
x
|
x
|
=
x
|
x
|
,
x
≠
0
{\displaystyle {d \over dx}|x|={x \over |x|},\qquad x\neq 0}
d
d
x
x
c
=
c
x
c
−
1
{\displaystyle {d \over dx}x^{c}=cx^{c-1}}
d
d
x
(
1
x
)
=
d
d
x
(
x
−
1
)
=
−
x
−
2
=
−
1
x
2
{\displaystyle {d \over dx}\left({1 \over x}\right)={d \over dx}\left(x^{-1}\right)=-x^{-2}=-{1 \over x^{2}}}
d
d
x
(
1
x
c
)
=
d
d
x
(
x
−
c
)
=
−
c
x
c
+
1
{\displaystyle {d \over dx}\left({1 \over x^{c}}\right)={d \over dx}\left(x^{-c}\right)=-{c \over x^{c+1}}}
d
d
x
x
=
d
d
x
x
1
2
=
1
2
x
−
1
2
=
1
2
x
,
x
>
0
{\displaystyle {d \over dx}{\sqrt {x}}={d \over dx}x^{1 \over 2}={1 \over 2}x^{-{1 \over 2}}={1 \over 2{\sqrt {x}}},\qquad x>0}
d
d
x
c
x
=
c
x
log
e
c
=
c
x
ln
c
,
c
>
0
;
{\displaystyle {d \over dx}c^{x}=c^{x}\log _{e}c={c^{x}\ln c},\qquad c>0;}
d
d
x
e
x
=
e
x
log
e
e
=
e
x
;
{\displaystyle {d \over dx}e^{x}=e^{x}\log _{e}e=e^{x};}
d
d
x
e
−
x
=
−
e
−
x
=
sinh
(
x
)
−
cosh
(
x
)
;
{\displaystyle {d \over dx}e^{-x}=-e^{-x}=\sinh(x)-\cosh(x);}
d
d
x
log
c
x
=
1
x
ln
c
,
c
>
0
,
c
≠
1
;
{\displaystyle {d \over dx}\log _{c}x={1 \over x\ln c},\qquad c>0,c\neq 1;}
d
d
x
ln
x
=
1
x
,
x
>
0
;
{\displaystyle {d \over dx}\ln x={1 \over x},\qquad x>0;}
d
d
x
ln
|
x
|
=
1
x
;
{\displaystyle {d \over dx}\ln |x|={1 \over x};}
d
d
x
x
x
=
x
x
(
1
+
ln
x
)
.
{\displaystyle {d \over dx}x^{x}=x^{x}(1+\ln x).}
d
d
x
sin
x
=
cos
x
{\displaystyle {d \over dx}\sin x=\cos x}
d
d
x
cos
x
=
−
sin
x
{\displaystyle {d \over dx}\cos x=-\sin x}
d
d
x
tan
x
=
sec
2
x
=
1
cos
2
x
{\displaystyle {d \over dx}\tan x=\sec ^{2}x={1 \over \cos ^{2}x}}
d
d
x
sec
x
=
tan
x
sec
x
=
sin
x
cos
2
x
{\displaystyle {d \over dx}\sec x=\tan x\sec x={\frac {\sin x}{\cos ^{2}x}}}
d
d
x
csc
x
=
−
csc
x
cot
x
=
−
cos
x
sin
2
x
{\displaystyle {d \over dx}\csc x=-\csc x\cot x=-{\frac {\cos x}{\sin ^{2}x}}}
d
d
x
cot
x
=
−
csc
2
x
=
−
1
sin
2
x
{\displaystyle {d \over dx}\cot x=-\csc ^{2}x={-1 \over \sin ^{2}x}}
d
d
x
arcsin
x
=
1
1
−
x
2
{\displaystyle {d \over dx}\arcsin x={1 \over {\sqrt {1-x^{2}}}}}
d
d
x
arccos
x
=
−
1
1
−
x
2
{\displaystyle {d \over dx}\arccos x={-1 \over {\sqrt {1-x^{2}}}}}
d
d
x
arctan
x
=
1
1
+
x
2
{\displaystyle {d \over dx}\arctan x={1 \over 1+x^{2}}}
d
d
x
arcsec
x
=
1
|
x
|
x
2
−
1
{\displaystyle {d \over dx}\operatorname {arcsec} x={1 \over |x|{\sqrt {x^{2}-1}}}}
d
d
x
arccsc
x
=
−
1
|
x
|
x
2
−
1
{\displaystyle {d \over dx}\operatorname {arccsc} x={-1 \over |x|{\sqrt {x^{2}-1}}}}
d
d
x
arccot
x
=
−
1
1
+
x
2
{\displaystyle {d \over dx}\operatorname {arccot} x={-1 \over 1+x^{2}}}
d
d
x
sinh
x
=
cosh
x
=
e
x
+
e
−
x
2
{\displaystyle {d \over dx}\sinh x=\cosh x={\frac {e^{x}+e^{-x}}{2}}}
d
d
x
cosh
x
=
sinh
x
=
e
x
−
e
−
x
2
{\displaystyle {d \over dx}\cosh x=\sinh x={\frac {e^{x}-e^{-x}}{2}}}
d
d
x
tanh
x
=
sech
2
x
{\displaystyle {d \over dx}\tanh x=\operatorname {sech} ^{2}\,x}
d
d
x
sech
x
=
−
tanh
x
sech
x
{\displaystyle {d \over dx}\,\operatorname {sech} \,x=-\tanh x\,\operatorname {sech} \,x}
d
d
x
coth
x
=
−
csch
2
x
{\displaystyle {d \over dx}\,\operatorname {coth} \,x=-\,\operatorname {csch} ^{2}\,x}
d
d
x
csch
x
=
−
coth
x
csch
x
{\displaystyle {d \over dx}\,\operatorname {csch} \,x=-\,\operatorname {coth} \,x\,\operatorname {csch} \,x}
d
d
x
arcsinh
x
=
1
x
2
+
1
{\displaystyle {d \over dx}\,\operatorname {arcsinh} \,x={1 \over {\sqrt {x^{2}+1}}}}
d
d
x
arccosh
x
=
−
1
x
2
−
1
{\displaystyle {d \over dx}\,\operatorname {arccosh} \,x={-1 \over {\sqrt {x^{2}-1}}}}
d
d
x
arctanh
x
=
1
1
−
x
2
{\displaystyle {d \over dx}\,\operatorname {arctanh} \,x={1 \over 1-x^{2}}}
d
d
x
arcsech
x
=
−
1
x
1
−
x
2
{\displaystyle {d \over dx}\,\operatorname {arcsech} \,x={-1 \over x{\sqrt {1-x^{2}}}}}
d
d
x
arccoth
x
=
1
1
−
x
2
{\displaystyle {d \over dx}\,\operatorname {arccoth} \,x={1 \over 1-x^{2}}}
d
d
x
arccsch
x
=
−
1
|
x
|
1
+
x
2
{\displaystyle {d \over dx}\,\operatorname {arccsch} \,x={-1 \over |x|{\sqrt {1+x^{2}}}}}
d
d
x
(
f
−
1
(
x
)
)
=
1
f
′
(
f
−
1
(
x
)
)
{\displaystyle {d \over dx}(f^{-1}(x))={\frac {1}{f'(f^{-1}(x))}}}
, bet kuriai diferencijuojamai realaus argumento funkcijai f su realiomis vertėmis, kada surasta kompozicija ir inversija egzistuoja.