A technique for the optimization of stability-constrained geometrically nonlinear shallow trusses... more A technique for the optimization of stability-constrained geometrically nonlinear shallow trusses with snap-through behavior is demonstrated using the arc length method and a strain energy density approach within a discrete finite-element formulation. The optimization method uses an iterative scheme that evaluates the performance of the design variables and then updates them according to a recursive formula that is controlled by the arc length method. A minimum weight design is achieved when a uniform nonlinear strain energy density is found in all members. This minimal condition places the design load just below the critical-limit load that causes snap-through of the structure. The optimization scheme is programmed into a nonlinear finite-element algorithm to find the large strain energy at critical-limit loads. Examples of highly nonlinear trusses that are found in literature are presented to verify the method.
A major goal of NASA's In-Space Propulsion Program is to shorten trip times for scientific planet... more A major goal of NASA's In-Space Propulsion Program is to shorten trip times for scientific planetary missions. To meet this challenge arrival speeds will increase, requiring significant braking for orbit insertion, and thus increased deceleration propellant mass that may exceed launch lift capabilities. A technology called aerocapture has been developed to expand the mission potential of exploratory probes destined for planets with suitable atmospheres. Aerocapture inserts a probe into planetary orbit via a single pass through the atmosphere using the probe's aeroshell drag to reduce velocity. The benefit of an aerocapture maneuver is a large reduction in propellant mass that may result in smaller, less costly missions and reduced mission cruise times. The methodology used to design rigid aerocapture aeroshells will be presented with an emphasis on a new systems tool under development. Current methods for fast, efficient evaluations of structural systems for exploratory vehicles to planets and moons within our solar system have been under development within NASA having limited success. Many systems tools that have been attempted applied structural mass estimation techniques based on historical data and curve fitting techniques that are difficult and cumbersome to apply to new vehicle concepts and missions. The resulting vehicle aeroshell mass may be incorrectly estimated or have high margins included to account for uncertainty. This new tool will reduce the guesswork previously found in conceptual aeroshell mass estimations.
A multi-center study was conducted in 2003 to assess the feasibility of and technology requiremen... more A multi-center study was conducted in 2003 to assess the feasibility of and technology requirements for using aerocapture to insert a scientific platform into orbit around Neptune. The aerocapture technique offers a potential method of greatly reducing orbiter mass and thus total spacecraft launch mass by minimizing the required propulsion system mass. This study involved the collaborative efforts of personnel
A major goal of NASA's In-Space Propulsion Program is to shorten trip times for scientific planet... more A major goal of NASA's In-Space Propulsion Program is to shorten trip times for scientific planetary missions. To meet this challenge arrival speeds will increase, requiring significant braking for orbit insertion, and thus increased deceleration propellant mass that may exceed launch lift capabilities. A technology called aerocapture has been developed to expand the mission potential of exploratory probes destined for planets with suitable atmospheres. Aerocapture inserts a probe into planetary orbit via a single pass through the atmosphere using the probe's aeroshell drag to reduce velocity. The benefit of an aerocapture maneuver is a large reduction in propellant mass that may result in smaller, less costly missions and reduced mission cruise times. The methodology used to design rigid aerocapture aeroshells will be presented with an emphasis on a new systems tool under development. Current methods for fast, efficient evaluations of structural systems for exploratory vehicles to planets and moons within our solar system have been under development within NASA having limited success. Many systems tools that have been attempted applied structural mass estimation techniques based on historical data and curve fitting techniques that are difficult and cumbersome to apply to new vehicle concepts and missions. The resulting vehicle aeroshell mass may be incorrectly estimated or have high margins included to account for uncertainty. This new tool will reduce the guesswork previously found in conceptual aeroshell mass estimations.
A technique for the optimization of stability-constrained geometrically nonlinear shallow trusses... more A technique for the optimization of stability-constrained geometrically nonlinear shallow trusses with snap-through behavior is demonstrated using the arc length method and a strain energy density approach within a discrete finite-element formulation. The optimization method uses an iterative scheme that evaluates the performance of the design variables and then updates them according to a recursive formula that is controlled by the arc length method. A minimum weight design is achieved when a uniform nonlinear strain energy density is found in all members. This minimal condition places the design load just below the critical-limit load that causes snap-through of the structure. The optimization scheme is programmed into a nonlinear finite-element algorithm to find the large strain energy at critical-limit loads. Examples of highly nonlinear trusses that are found in literature are presented to verify the method.
A major goal of NASA's In-Space Propulsion Program is to shorten trip times for scientific planet... more A major goal of NASA's In-Space Propulsion Program is to shorten trip times for scientific planetary missions. To meet this challenge arrival speeds will increase, requiring significant braking for orbit insertion, and thus increased deceleration propellant mass that may exceed launch lift capabilities. A technology called aerocapture has been developed to expand the mission potential of exploratory probes destined for planets with suitable atmospheres. Aerocapture inserts a probe into planetary orbit via a single pass through the atmosphere using the probe's aeroshell drag to reduce velocity. The benefit of an aerocapture maneuver is a large reduction in propellant mass that may result in smaller, less costly missions and reduced mission cruise times. The methodology used to design rigid aerocapture aeroshells will be presented with an emphasis on a new systems tool under development. Current methods for fast, efficient evaluations of structural systems for exploratory vehicles to planets and moons within our solar system have been under development within NASA having limited success. Many systems tools that have been attempted applied structural mass estimation techniques based on historical data and curve fitting techniques that are difficult and cumbersome to apply to new vehicle concepts and missions. The resulting vehicle aeroshell mass may be incorrectly estimated or have high margins included to account for uncertainty. This new tool will reduce the guesswork previously found in conceptual aeroshell mass estimations.
A multi-center study was conducted in 2003 to assess the feasibility of and technology requiremen... more A multi-center study was conducted in 2003 to assess the feasibility of and technology requirements for using aerocapture to insert a scientific platform into orbit around Neptune. The aerocapture technique offers a potential method of greatly reducing orbiter mass and thus total spacecraft launch mass by minimizing the required propulsion system mass. This study involved the collaborative efforts of personnel
A major goal of NASA's In-Space Propulsion Program is to shorten trip times for scientific planet... more A major goal of NASA's In-Space Propulsion Program is to shorten trip times for scientific planetary missions. To meet this challenge arrival speeds will increase, requiring significant braking for orbit insertion, and thus increased deceleration propellant mass that may exceed launch lift capabilities. A technology called aerocapture has been developed to expand the mission potential of exploratory probes destined for planets with suitable atmospheres. Aerocapture inserts a probe into planetary orbit via a single pass through the atmosphere using the probe's aeroshell drag to reduce velocity. The benefit of an aerocapture maneuver is a large reduction in propellant mass that may result in smaller, less costly missions and reduced mission cruise times. The methodology used to design rigid aerocapture aeroshells will be presented with an emphasis on a new systems tool under development. Current methods for fast, efficient evaluations of structural systems for exploratory vehicles to planets and moons within our solar system have been under development within NASA having limited success. Many systems tools that have been attempted applied structural mass estimation techniques based on historical data and curve fitting techniques that are difficult and cumbersome to apply to new vehicle concepts and missions. The resulting vehicle aeroshell mass may be incorrectly estimated or have high margins included to account for uncertainty. This new tool will reduce the guesswork previously found in conceptual aeroshell mass estimations.
Uploads
Papers by Glenn Hrinda