Numerous studies have suggested relationships between myeloperoxidase, inflammation, and atherosc... more Numerous studies have suggested relationships between myeloperoxidase, inflammation, and atherosclerosis. MPO-derived reactive chlorinating species (RCS) attack membrane plasmalogens releasing ␣-chloro-fatty aldehydes (␣-Cl-FALDs) including 2-chlorohexadecanal (2-ClHDA). The molecular targets of ␣-Cl-FALDs are not known. The current study demonstrates 2-ClHDA adducts with ethanolamine glycerophospholipids and Fmoc-lysine. Utilizing electrospray ionization mass spectrometry, chlorinated adducts were observed that are apparent Schiff base adducts. Reduction of these Schiff base adducts with sodium cyanoborohydride resulted in a novel, stable adduct produced by the elimination of HCl. NMR further confirmed this structure. 2-ClHDA adducts with ethanolamine glycerophospholipids were also substrates for phospholipase D (PLD). The hydrolysis products were derivatized to pentafluorobenzoyl esters, and further structurally confirmed by GC-MS. Multiple molecular species of 2-ClHDA-N-modified ethanolamine glycerophospholipids were observed in endothelial cells treated with 2-ClHDA. These results show novel Schiff base adducts of ␣-Cl-FALDs with primary amines, which may represent an important fate of ␣-Cl-FALDs.
Hypochlorite-oxidized low-density lipoprotein (− OCl-LDL) has been shown to stimulate various fun... more Hypochlorite-oxidized low-density lipoprotein (− OCl-LDL) has been shown to stimulate various functions of human polymorphonuclear leukocytes (PMNLs). Incubation of PMNLs with − OCl-LDL (produced by incubation of 0.4 mM LDL cholesterol with 1 mM NaOCl for 40 min at 37°C) but not native or copper-oxidized LDL induced a substantial generation of reactive oxygen species (ROS) as measured by means of chemiluminescence with one peak at 10-12 min. Upon stimulation with − OCl-LDL about 70% of ROS (hydrogen peroxide and superoxide anion) were released from the cells into the extracellular environment. The − OCl-LDL-induced increase of the respiratory burst was dependent upon the dose, exposure time, and extent of LDL oxidation. Cytochalasin B, an inhibitor of phagocytosis, markedly diminished the LDL-induced ROS generation to nearly 40% of control values. − OCl-LDL enhanced the adhesion of PMNLs to human umbilical venous endothelial cells 2.5-fold as compared to native LDL and promoted the secretion of the active granule enzymes lysozyme and i-glucuronidase. Together, the results suggest a potential role of LDL-activated PMNLs in initiating and/or maintaining the inflammatory process during the early phase of atherosclerotic lesion development. Alternatively, PMNLs may also play a protective role by phagocytosing oxidized LDL and, thus, preventing further detrimental atherogenic effects of oxidized LDL.
Journal of Cancer Research and Clinical Oncology, 1989
The purpose of this study was to find further experimental evidence for the postulated negative a... more The purpose of this study was to find further experimental evidence for the postulated negative association between the extent of lipid peroxidation in tumor cells and their proliferative behavior. After incubation of Ehrlich ascites tumor cells at 37 degrees C for 30 min with increasing concentrations of Fe(II) histidinate (Fe/His) the following parameters were determined: the formation of lipid hydroperoxides was measured fluorimetrically after reaction with dichlorofluorescein; 4-hydroxynonenal was determined by reversed-phase high-pressure chromatography after derivatization with dinitrophenylhydrazine; as a third parameter of lipid peroxidation the formation of 2-thiobarbituric-acid-reactive substances was determined. The proliferative activity was determined by measuring the growth rate in vivo after reimplantation i.p. of the tumor cells into mice. Trypan-blue exclusion tests for viability were performed before reimplantation. The reliability of the trypan-blue exclusion tests was checked by comparing the results with another parameter of viability, the release of the cytosolic enzyme lactate dehydrogenase. The concentration both of lipid hydroperoxides and of 2-thiobarbituric-acid-reactive substances showed a biphasic dependence on the concentration of Fe/His with maximal increase at iron concentrations of 0.25 mM and 0.1 mM respectively. 4-Hydroxynonenal, in contrast, showed a continuous increase up to 41.1 nM (corresponding to 0.58 pmol/10(9) cells) with increasing iron concentration in the range from 0.1 mM to 0.6 mM. The total number of tumor cells, when determined 5 days after reimplantation, continuously decreased with increasing iron concentration, showing half-maximal inhibition at about 0.22 mM Fe. The exclusion of the trypan-blue dye was unaffected by the presence of iron at any concentration used. Similarly, iron had no influence on the release of lactate dehydrogenase. The results support the hypothesis that 4-hydroxynonenal may act as an inhibiting messenger between endogenic lipid peroxidation and proliferation.
Elastin is an abundant extracellular matrix protein in elastic tissues, including the lungs, skin... more Elastin is an abundant extracellular matrix protein in elastic tissues, including the lungs, skin and arteries, and comprises 30-57% of the aorta by dry mass. The monomeric precursor, tropoelastin (TE), undergoes complex processing during elastogenesis to form mature elastic fibres. Peroxynitrous acid (ONOOH), a potent oxidising and nitrating agent, is formed in vivo from superoxide and nitric oxide radicals. Considerable evidence supports ONOOH formation in the inflamed artery wall, and a role for this species in the development of human atherosclerotic lesions, with ONOOH-damaged extracellular matrix implicated in lesion rupture. We demonstrate that TE is highly sensitive to ONOOH, with this resulting in extensive dimerization, fragmentation and nitration of Tyr residues to give 3-nitrotyrosine (3-nitroTyr). This occurs with equimolar or greater levels of oxidant and increases in a dose-dependent manner. Quantification of Tyr loss and 3-nitroTyr formation indicates extensive Tyr m...
Elastin is an abundant extracellular matrix protein in elastic tissues, including the lungs, skin... more Elastin is an abundant extracellular matrix protein in elastic tissues, including the lungs, skin and arteries, and comprises 30-57% of the aorta by dry mass. The monomeric precursor, tropoelastin (TE), undergoes complex processing during elastogenesis to form mature elastic fibres. Peroxynitrous acid (ONOOH), a potent oxidising and nitrating agent, is formed in vivo from superoxide and nitric oxide radicals. Considerable evidence supports ONOOH formation in the inflamed artery wall, and a role for this species in the development of human atherosclerotic lesions, with ONOOH-damaged extracellular matrix implicated in lesion rupture. We demonstrate that TE is highly sensitive to ONOOH, with this resulting in extensive dimerization, fragmentation and nitration of Tyr residues to give 3-nitrotyrosine (3-nitroTyr). This occurs with equimolar or greater levels of oxidant and increases in a dose-dependent manner. Quantification of Tyr loss and 3-nitroTyr formation indicates extensive Tyr m...
Background: Microglia, the immunocompetent cells of the CNS, rapidly respond to brain injury and ... more Background: Microglia, the immunocompetent cells of the CNS, rapidly respond to brain injury and disease by altering their morphology and phenotype to adopt an activated state. Microglia can exist broadly between two different states, namely the classical (M1) and the alternative (M2) phenotype. The first is characterized by the production of pro-inflammatory cytokines/chemokines and reactive oxygen and/or nitrogen species. In contrast, alternatively activated microglia are typified by an anti-inflammatory phenotype supporting wound healing and debris clearance. The objective of the present study was to determine the outcome of lysophosphatidic acid (LPA)-mediated signaling events on microglia polarization. Methods: LPA receptor expression and cyto-/chemokine mRNA levels in BV-2 and primary murine microglia (PMM) were determined by qPCR. M1/M2 marker expression was analyzed by Western blotting, immunofluorescence microscopy, or flow cytometry. Cyto-/chemokine secretion was quantitated by ELISA. Results: BV-2 cells express LPA receptor 2 (LPA2), 3, 5, and 6, whereas PMM express LPA1, 2, 4, 5, and 6. We show that LPA treatment of BV-2 and PMM leads to a shift towards a pro-inflammatory M1-like phenotype. LPA treatment increased CD40 and CD86 (M1 markers) and reduced CD206 (M2 marker) expression. LPA increased inducible nitric oxide synthase (iNOS) and COX-2 levels (both M1), while the M2 marker Arginase-1 was suppressed in BV-2 cells. Immunofluorescence studies (iNOS, COX-2, Arginase-1, and RELMα) extended these findings to PMM. Upregulation of M1 markers in BV-2 and PMM was accompanied by increased cyto-/chemokine transcription and secretion (IL-1β, TNFα, IL-6, CCL5, and CXCL2). The pharmacological LPA5 antagonist TCLPA5 blunted most of these pro-inflammatory responses. Conclusions: LPA drives BV-2 and PMM towards a pro-inflammatory M1-like phenotype. Suppression by TCLPA5 indicates that the LPA/LPA5 signaling axis could represent a potential pharmacological target to interfere with microglia polarization in disease.
Background: Microglia, the immunocompetent cells of the CNS, rapidly respond to brain injury and ... more Background: Microglia, the immunocompetent cells of the CNS, rapidly respond to brain injury and disease by altering their morphology and phenotype to adopt an activated state. Microglia can exist broadly between two different states, namely the classical (M1) and the alternative (M2) phenotype. The first is characterized by the production of pro-inflammatory cytokines/chemokines and reactive oxygen and/or nitrogen species. In contrast, alternatively activated microglia are typified by an anti-inflammatory phenotype supporting wound healing and debris clearance. The objective of the present study was to determine the outcome of lysophosphatidic acid (LPA)-mediated signaling events on microglia polarization. Methods: LPA receptor expression and cyto-/chemokine mRNA levels in BV-2 and primary murine microglia (PMM) were determined by qPCR. M1/M2 marker expression was analyzed by Western blotting, immunofluorescence microscopy, or flow cytometry. Cyto-/chemokine secretion was quantitated by ELISA. Results: BV-2 cells express LPA receptor 2 (LPA2), 3, 5, and 6, whereas PMM express LPA1, 2, 4, 5, and 6. We show that LPA treatment of BV-2 and PMM leads to a shift towards a pro-inflammatory M1-like phenotype. LPA treatment increased CD40 and CD86 (M1 markers) and reduced CD206 (M2 marker) expression. LPA increased inducible nitric oxide synthase (iNOS) and COX-2 levels (both M1), while the M2 marker Arginase-1 was suppressed in BV-2 cells. Immunofluorescence studies (iNOS, COX-2, Arginase-1, and RELMα) extended these findings to PMM. Upregulation of M1 markers in BV-2 and PMM was accompanied by increased cyto-/chemokine transcription and secretion (IL-1β, TNFα, IL-6, CCL5, and CXCL2). The pharmacological LPA5 antagonist TCLPA5 blunted most of these pro-inflammatory responses. Conclusions: LPA drives BV-2 and PMM towards a pro-inflammatory M1-like phenotype. Suppression by TCLPA5 indicates that the LPA/LPA5 signaling axis could represent a potential pharmacological target to interfere with microglia polarization in disease.
Trophoblast invasion into uterine tissues represents a hallmark of first trimester placental deve... more Trophoblast invasion into uterine tissues represents a hallmark of first trimester placental development. As expression of serum amyloid A4 (SAA4) occurs in tumorigenic and invasive tissues we here investigated whether SAA4 is present in trophoblast-like human AC1-M59/Jeg-3 cells and trophoblast preparations of human first trimester and term placenta. SAA4 mRNA was expressed in non-stimulated and cytokine-treated AC1-M59/Jeg-3 cells. In purified trophoblast cells SAA4 mRNA expression was upregulated at weeks 10 and 12 of pregnancy. Western-blot and immunohistochemical staining of first trimester placental tissue revealed pronounced SAA4 expression in invasive trophoblast cells indicating a potential role of SAA4 during invasion.
Trophoblast invasion into uterine tissues represents a hallmark of first trimester placental deve... more Trophoblast invasion into uterine tissues represents a hallmark of first trimester placental development. As expression of serum amyloid A4 (SAA4) occurs in tumorigenic and invasive tissues we here investigated whether SAA4 is present in trophoblast-like human AC1-M59/Jeg-3 cells and trophoblast preparations of human first trimester and term placenta. SAA4 mRNA was expressed in non-stimulated and cytokine-treated AC1-M59/Jeg-3 cells. In purified trophoblast cells SAA4 mRNA expression was upregulated at weeks 10 and 12 of pregnancy. Western-blot and immunohistochemical staining of first trimester placental tissue revealed pronounced SAA4 expression in invasive trophoblast cells indicating a potential role of SAA4 during invasion.
Peripheral leukocytes can exacerbate brain damage by release of cytotoxic mediators that disrupt ... more Peripheral leukocytes can exacerbate brain damage by release of cytotoxic mediators that disrupt blood-brain barrier (BBB) function. One of the oxidants released by activated leukocytes is hypochlorous acid (HOCl) formed via the myeloperoxidase (MPO)-H 2 O 2-Cl 2 system. In the present study we examined the role of leukocyte activation, leukocyte-derived MPO and MPO-generated oxidants on BBB function in vitro and in vivo. In a mouse model of lipopolysaccharide (LPS)-induced systemic inflammation, neutrophils that had become adherent released MPO into the cerebrovasculature. In vivo, LPSinduced BBB dysfunction was significantly lower in MPO-deficient mice as compared to wild-type littermates. Both, fMLPactivated leukocytes and the MPO-H 2 O 2-Cl 2 system inflicted barrier dysfunction of primary brain microvascular endothelial cells (BMVEC) that was partially rescued with the MPO inhibitor 4-aminobenzoic acid hydrazide. BMVEC treatment with the MPO-H 2 O 2-Cl 2 system or activated neutrophils resulted in the formation of plasmalogen-derived chlorinated fatty aldehydes. 2-chlorohexadecanal (2-ClHDA) severely compromised BMVEC barrier function and induced morphological alterations in tight and adherens junctions. In situ perfusion of rat brain with 2-ClHDA increased BBB permeability in vivo. 2-ClHDA potently activated the MAPK cascade at physiological concentrations. An ERK1/2 and JNK antagonist (PD098059 and SP600125, respectively) protected against 2-ClHDA-induced barrier dysfunction in vitro. The current data provide evidence that interference with the MPO pathway could protect against BBB dysfunction under (neuro)inflammatory conditions.
Peripheral leukocytes can exacerbate brain damage by release of cytotoxic mediators that disrupt ... more Peripheral leukocytes can exacerbate brain damage by release of cytotoxic mediators that disrupt blood-brain barrier (BBB) function. One of the oxidants released by activated leukocytes is hypochlorous acid (HOCl) formed via the myeloperoxidase (MPO)-H 2 O 2-Cl 2 system. In the present study we examined the role of leukocyte activation, leukocyte-derived MPO and MPO-generated oxidants on BBB function in vitro and in vivo. In a mouse model of lipopolysaccharide (LPS)-induced systemic inflammation, neutrophils that had become adherent released MPO into the cerebrovasculature. In vivo, LPSinduced BBB dysfunction was significantly lower in MPO-deficient mice as compared to wild-type littermates. Both, fMLPactivated leukocytes and the MPO-H 2 O 2-Cl 2 system inflicted barrier dysfunction of primary brain microvascular endothelial cells (BMVEC) that was partially rescued with the MPO inhibitor 4-aminobenzoic acid hydrazide. BMVEC treatment with the MPO-H 2 O 2-Cl 2 system or activated neutrophils resulted in the formation of plasmalogen-derived chlorinated fatty aldehydes. 2-chlorohexadecanal (2-ClHDA) severely compromised BMVEC barrier function and induced morphological alterations in tight and adherens junctions. In situ perfusion of rat brain with 2-ClHDA increased BBB permeability in vivo. 2-ClHDA potently activated the MAPK cascade at physiological concentrations. An ERK1/2 and JNK antagonist (PD098059 and SP600125, respectively) protected against 2-ClHDA-induced barrier dysfunction in vitro. The current data provide evidence that interference with the MPO pathway could protect against BBB dysfunction under (neuro)inflammatory conditions.
During the peri-implantation period, multinucleated syncytia are formed in the sheep placenta. Fo... more During the peri-implantation period, multinucleated syncytia are formed in the sheep placenta. For over 20 years the scientific consensus has been that during trophoblast syncytialization in sheep, binucleate trophoblast giant cells (BNCs) differentiate from mononuclear trophoblast cells, and individual BNCs fuse with individual luminal epithelial (LE) cells to form trinucleate cells. These trophoblast-LE syncytial plaques then grow through continued BNC migration and fusion. Therefore, LE cells are thought to be incorporated into syncytial plaques. However, these ideas were based on electron microscopy studies, without benefit of molecular markers for BNC and LE cells to support conclusions. The aim of this study was to observe interactions between BNCs and uterine LE cells using immunohistochemical localization for molecular markers for BNCs and uterine LE cells. We performed immunofluorescence staining, laser capture microdissection, and TUNEL staining on the uterine-placental tissues of sheep during early placentation. We observed: (1) syncytial cells containing more than two nuclei within the trophoblast cell layer; (2) depolarized LE cells that express caspase 3 and stain positively for TUNEL; (3) engulfment of caspase 3-positive LE cells by trophoblast giant cells (TGCs) and empty spaces within the LE layer at sites of implantation; (4) rapid enlargement of syncytial plaques; and (5) E-cadherin and TUNEL-positive cells within the uterine stroma underlying degenerating LE was coincident with accumulation of CD45-positive cells at these sites. These data suggest that during early placentation: (1) fusion between trophoblasts is not limited to the formation of BNCs, and the term 'trophoblast giant cell (TGC)' may be appropriate; (2) LE cells undergo apoptosis; (3) apoptotic LE cells are eliminated by TGCs; (4) fusion is not limited to the incorporation of new BNCs but involves the lateral fusion between growing syncytial plaques; and (5) TGCs carry apoptotic LE cells away from the uterine-placental interface for elimination by immune cells within the stroma. These data indicate that uterine LE cells are not incorporated into syncytial plaques, but are engulfed and eliminated, and that early placentation in sheep is more similar to early placentation in humans than is currently understood in that both develop mononucleated cytotrophoblast and multinucleated syncytiotrophoblast layers of entirely placental origin. The elimination of LE cells by sheep TGCs might provide insights into elimination and penetration of LE cells during human embryo implantation.
During the peri-implantation period, multinucleated syncytia are formed in the sheep placenta. Fo... more During the peri-implantation period, multinucleated syncytia are formed in the sheep placenta. For over 20 years the scientific consensus has been that during trophoblast syncytialization in sheep, binucleate trophoblast giant cells (BNCs) differentiate from mononuclear trophoblast cells, and individual BNCs fuse with individual luminal epithelial (LE) cells to form trinucleate cells. These trophoblast-LE syncytial plaques then grow through continued BNC migration and fusion. Therefore, LE cells are thought to be incorporated into syncytial plaques. However, these ideas were based on electron microscopy studies, without benefit of molecular markers for BNC and LE cells to support conclusions. The aim of this study was to observe interactions between BNCs and uterine LE cells using immunohistochemical localization for molecular markers for BNCs and uterine LE cells. We performed immunofluorescence staining, laser capture microdissection, and TUNEL staining on the uterine-placental tissues of sheep during early placentation. We observed: (1) syncytial cells containing more than two nuclei within the trophoblast cell layer; (2) depolarized LE cells that express caspase 3 and stain positively for TUNEL; (3) engulfment of caspase 3-positive LE cells by trophoblast giant cells (TGCs) and empty spaces within the LE layer at sites of implantation; (4) rapid enlargement of syncytial plaques; and (5) E-cadherin and TUNEL-positive cells within the uterine stroma underlying degenerating LE was coincident with accumulation of CD45-positive cells at these sites. These data suggest that during early placentation: (1) fusion between trophoblasts is not limited to the formation of BNCs, and the term 'trophoblast giant cell (TGC)' may be appropriate; (2) LE cells undergo apoptosis; (3) apoptotic LE cells are eliminated by TGCs; (4) fusion is not limited to the incorporation of new BNCs but involves the lateral fusion between growing syncytial plaques; and (5) TGCs carry apoptotic LE cells away from the uterine-placental interface for elimination by immune cells within the stroma. These data indicate that uterine LE cells are not incorporated into syncytial plaques, but are engulfed and eliminated, and that early placentation in sheep is more similar to early placentation in humans than is currently understood in that both develop mononucleated cytotrophoblast and multinucleated syncytiotrophoblast layers of entirely placental origin. The elimination of LE cells by sheep TGCs might provide insights into elimination and penetration of LE cells during human embryo implantation.
Background. Glioblastoma multiforme (GBM) is a highly aggressive tumor of the central nervous sys... more Background. Glioblastoma multiforme (GBM) is a highly aggressive tumor of the central nervous system with a dismal prognosis for affected patients. Aberrant protein kinase C (PKC) signaling has been implicated in gliomagenesis, and a member of the PKC-activated protein kinase D (PRKD) family, PRKD2, was identified as mediator of GBM growth in vitro and in vivo. Methods. The outcome of PRKD2 silencing and pharmacological inhibition on glioma cell proliferation was established with different glioma cell lines. Western blotting, senescence assays, co-immunoprecipitation, fluorescence activated cell sorting, quantitative PCR, and immunofluorescence microscopy were utilized to analyze downstream signaling. Results. RNA-interference (21-mer siRNA) and pharmacological inhibition (CRT0066101) of PRKD2 profoundly inhibited proliferation of p53 wt (U87MG, A172, and primary GBM2), and p53 mut (GM133, T98G, U251, and primary Gli25) glioma cells. In a xenograft experiment, PRKD2 silencing significantly delayed tumor growth of U87MG cells. PRKD2 silencing in p53 wt and p53 mut cells was associated with typical hallmarks of senescence and cell cycle arrest in G1. Attenuated AKT/PKB phosphorylation in response to PRKD2 silencing was a common observation made in p53 wt and p53 mut GBM cells. PRKD2 knockdown in p53 wt cells induced upregulation of p53, p21, and p27 expression, decreased phosphorylation of CDK2 and/or CDK4, hypophosphorylation of retinoblastoma protein (pRb), and reduced transcription of E2F1. In p53 mut GM133 and primary Gli25 cells, PRKD2 silencing increased p27 and p15 and reduced E2F1 transcription but did not affect pRb phosphorylation. Conclusions. PRKD2 silencing induces glioma cell senescence via p53-dependent and-independent pathways.
Background. Glioblastoma multiforme (GBM) is a highly aggressive tumor of the central nervous sys... more Background. Glioblastoma multiforme (GBM) is a highly aggressive tumor of the central nervous system with a dismal prognosis for affected patients. Aberrant protein kinase C (PKC) signaling has been implicated in gliomagenesis, and a member of the PKC-activated protein kinase D (PRKD) family, PRKD2, was identified as mediator of GBM growth in vitro and in vivo. Methods. The outcome of PRKD2 silencing and pharmacological inhibition on glioma cell proliferation was established with different glioma cell lines. Western blotting, senescence assays, co-immunoprecipitation, fluorescence activated cell sorting, quantitative PCR, and immunofluorescence microscopy were utilized to analyze downstream signaling. Results. RNA-interference (21-mer siRNA) and pharmacological inhibition (CRT0066101) of PRKD2 profoundly inhibited proliferation of p53 wt (U87MG, A172, and primary GBM2), and p53 mut (GM133, T98G, U251, and primary Gli25) glioma cells. In a xenograft experiment, PRKD2 silencing significantly delayed tumor growth of U87MG cells. PRKD2 silencing in p53 wt and p53 mut cells was associated with typical hallmarks of senescence and cell cycle arrest in G1. Attenuated AKT/PKB phosphorylation in response to PRKD2 silencing was a common observation made in p53 wt and p53 mut GBM cells. PRKD2 knockdown in p53 wt cells induced upregulation of p53, p21, and p27 expression, decreased phosphorylation of CDK2 and/or CDK4, hypophosphorylation of retinoblastoma protein (pRb), and reduced transcription of E2F1. In p53 mut GM133 and primary Gli25 cells, PRKD2 silencing increased p27 and p15 and reduced E2F1 transcription but did not affect pRb phosphorylation. Conclusions. PRKD2 silencing induces glioma cell senescence via p53-dependent and-independent pathways.
Indoleamine 2,3-dioxygenase (IDO) has been implicated in regulation of feto-maternal tolerance an... more Indoleamine 2,3-dioxygenase (IDO) has been implicated in regulation of feto-maternal tolerance and protection against intracellular and extracellular pathogens. We have studied the expression of IDO in the human female reproductive tract and the placenta by immunohistochemistry. Endometrial glandular and surface epithelial cells showed increasing IDO expression during the course of the menstrual cycle. In term placenta, IDO was irregularly localized to the mesenchymal core and found in isolated areas of the syncytiotrophoblast. In first trimester pregnancy, IDO was not present in placental villi, but was present in glandular epithelium of the decidua, and there were distinctly positive cells scattered in the connective tissue, sometimes in conjunction with lymphoid aggregates. The endothelium of spiral arteries and of capillaries showed some, albeit no generalized, reactivity. IDO was also present in the epithelium of cervical glands and of Fallopian tubes. Specificity of antibody binding was confirmed by Western blot analysis. IDO mRNA was detected in first trimester decidua as determined by RT-PCR. IDO is secreted, as determined by analysis of cervical mucus by high pressure liquid chromatography for the presence of the tryptophan metabolite L-kynurenine, indicating IDO activity. Our results support the concept of IDO providing a mechanism of innate immunity protecting against ascending infections in the female reproductive tract.
Indoleamine 2,3-dioxygenase (IDO) has been implicated in regulation of feto-maternal tolerance an... more Indoleamine 2,3-dioxygenase (IDO) has been implicated in regulation of feto-maternal tolerance and protection against intracellular and extracellular pathogens. We have studied the expression of IDO in the human female reproductive tract and the placenta by immunohistochemistry. Endometrial glandular and surface epithelial cells showed increasing IDO expression during the course of the menstrual cycle. In term placenta, IDO was irregularly localized to the mesenchymal core and found in isolated areas of the syncytiotrophoblast. In first trimester pregnancy, IDO was not present in placental villi, but was present in glandular epithelium of the decidua, and there were distinctly positive cells scattered in the connective tissue, sometimes in conjunction with lymphoid aggregates. The endothelium of spiral arteries and of capillaries showed some, albeit no generalized, reactivity. IDO was also present in the epithelium of cervical glands and of Fallopian tubes. Specificity of antibody binding was confirmed by Western blot analysis. IDO mRNA was detected in first trimester decidua as determined by RT-PCR. IDO is secreted, as determined by analysis of cervical mucus by high pressure liquid chromatography for the presence of the tryptophan metabolite L-kynurenine, indicating IDO activity. Our results support the concept of IDO providing a mechanism of innate immunity protecting against ascending infections in the female reproductive tract.
Myeloperoxidase (MPO), which is released from cytoplasmic granules of activated phagocytes by a d... more Myeloperoxidase (MPO), which is released from cytoplasmic granules of activated phagocytes by a degranulation process, reacts with H 2 O 2 (generated during the oxidative burst) and chloride ions to generate hypochlorous acid/hypochlorite (HOCl/OCl-). HOCl, a strong oxidant, in turn reacts with proteins to form HOCl-modified proteins. The presence of these cytotoxic chloramines during inflammatory conditions, eg, atherosclerosis and glomerular and tubulointerstitial injury, suggested that chloramines are powerful oxidants that can have profound biologic effects. In the present study, immunoreactive MPO was identified in fetal membranes and the basal plate and in maternal and fetal blood cells of human placental tissues. Monocytes/macrophages represent the major cell source for MPO in human placental tissues. Immunohistochemical findings revealed that HOCl-modified proteins are present in normal human term placenta but not during the first trimester of pregnancy (Weeks 7 to 12). HOCl-modified proteins were localized in areas formed by fetally derived cells as well as maternal decidual tissues, ie, areas where fetal extravillous trophoblast cells invade the maternal tissue and stimulate the maternal immune system. HOCl-modified proteins, products of the MPO-H 2 O 2-chloride system in vivo, were not present intracellularly, but immunoreactivity for HOCl-modified proteins was cell-associated and/or present in the extracellular matrix. Extravillous trophoblast cells, which may also exert phagocytic activities, showed no intracellular immunoreactivity for MPO or HOCl-modified proteins. The present findings indicate that the generation of HOCl-modified proteins during normal pregnancy is a physiologic rather than a pathophysiologic process.
Myeloperoxidase (MPO), which is released from cytoplasmic granules of activated phagocytes by a d... more Myeloperoxidase (MPO), which is released from cytoplasmic granules of activated phagocytes by a degranulation process, reacts with H 2 O 2 (generated during the oxidative burst) and chloride ions to generate hypochlorous acid/hypochlorite (HOCl/OCl-). HOCl, a strong oxidant, in turn reacts with proteins to form HOCl-modified proteins. The presence of these cytotoxic chloramines during inflammatory conditions, eg, atherosclerosis and glomerular and tubulointerstitial injury, suggested that chloramines are powerful oxidants that can have profound biologic effects. In the present study, immunoreactive MPO was identified in fetal membranes and the basal plate and in maternal and fetal blood cells of human placental tissues. Monocytes/macrophages represent the major cell source for MPO in human placental tissues. Immunohistochemical findings revealed that HOCl-modified proteins are present in normal human term placenta but not during the first trimester of pregnancy (Weeks 7 to 12). HOCl-modified proteins were localized in areas formed by fetally derived cells as well as maternal decidual tissues, ie, areas where fetal extravillous trophoblast cells invade the maternal tissue and stimulate the maternal immune system. HOCl-modified proteins, products of the MPO-H 2 O 2-chloride system in vivo, were not present intracellularly, but immunoreactivity for HOCl-modified proteins was cell-associated and/or present in the extracellular matrix. Extravillous trophoblast cells, which may also exert phagocytic activities, showed no intracellular immunoreactivity for MPO or HOCl-modified proteins. The present findings indicate that the generation of HOCl-modified proteins during normal pregnancy is a physiologic rather than a pathophysiologic process.
α-Tocopherol (αTocH), a member of the vitamin E family, is essential for normal neurological func... more α-Tocopherol (αTocH), a member of the vitamin E family, is essential for normal neurological function. Despite the importance of αTocH transport into the CNS, transfer mechanisms across the blood-brain barrier (BBB) are not entirely clear. We here investigate whether afamin, a known αTocH-binding protein, contributes to αTocH transport across an in vitro model of the BBB consisting of primary porcine brain capillary endothelial cells (BCEC) and basolaterally cultured astrocytoma cells. Exogenously added afamin had no adverse effects on BCEC viability or barrier function and was transported across BCEC Transwell cultures. Furthermore, αTocH transport across polarized BCEC cultures to astrocytoma cells is facilitated by afamin, though to a lesser extent than by high-density lipoprotein-mediated transport, an essential and in vivo operating αTocH import pathway at the cerebrovasculature. We also demonstrate that porcine BCEC endogenously synthesize afamin. In line with these in vitro findings, afamin was detected by immunohistochemistry in porcine, human postmortem, and mouse brain, where prominent staining was observed almost exclusively in the cerebrovasculature. The demonstration of afamin mRNA expression in isolated brain capillaries suggests that afamin might be a new family member of binding/transport proteins contributing to αTocH homeostasis at the BBB in vivo.
Numerous studies have suggested relationships between myeloperoxidase, inflammation, and atherosc... more Numerous studies have suggested relationships between myeloperoxidase, inflammation, and atherosclerosis. MPO-derived reactive chlorinating species (RCS) attack membrane plasmalogens releasing ␣-chloro-fatty aldehydes (␣-Cl-FALDs) including 2-chlorohexadecanal (2-ClHDA). The molecular targets of ␣-Cl-FALDs are not known. The current study demonstrates 2-ClHDA adducts with ethanolamine glycerophospholipids and Fmoc-lysine. Utilizing electrospray ionization mass spectrometry, chlorinated adducts were observed that are apparent Schiff base adducts. Reduction of these Schiff base adducts with sodium cyanoborohydride resulted in a novel, stable adduct produced by the elimination of HCl. NMR further confirmed this structure. 2-ClHDA adducts with ethanolamine glycerophospholipids were also substrates for phospholipase D (PLD). The hydrolysis products were derivatized to pentafluorobenzoyl esters, and further structurally confirmed by GC-MS. Multiple molecular species of 2-ClHDA-N-modified ethanolamine glycerophospholipids were observed in endothelial cells treated with 2-ClHDA. These results show novel Schiff base adducts of ␣-Cl-FALDs with primary amines, which may represent an important fate of ␣-Cl-FALDs.
Hypochlorite-oxidized low-density lipoprotein (− OCl-LDL) has been shown to stimulate various fun... more Hypochlorite-oxidized low-density lipoprotein (− OCl-LDL) has been shown to stimulate various functions of human polymorphonuclear leukocytes (PMNLs). Incubation of PMNLs with − OCl-LDL (produced by incubation of 0.4 mM LDL cholesterol with 1 mM NaOCl for 40 min at 37°C) but not native or copper-oxidized LDL induced a substantial generation of reactive oxygen species (ROS) as measured by means of chemiluminescence with one peak at 10-12 min. Upon stimulation with − OCl-LDL about 70% of ROS (hydrogen peroxide and superoxide anion) were released from the cells into the extracellular environment. The − OCl-LDL-induced increase of the respiratory burst was dependent upon the dose, exposure time, and extent of LDL oxidation. Cytochalasin B, an inhibitor of phagocytosis, markedly diminished the LDL-induced ROS generation to nearly 40% of control values. − OCl-LDL enhanced the adhesion of PMNLs to human umbilical venous endothelial cells 2.5-fold as compared to native LDL and promoted the secretion of the active granule enzymes lysozyme and i-glucuronidase. Together, the results suggest a potential role of LDL-activated PMNLs in initiating and/or maintaining the inflammatory process during the early phase of atherosclerotic lesion development. Alternatively, PMNLs may also play a protective role by phagocytosing oxidized LDL and, thus, preventing further detrimental atherogenic effects of oxidized LDL.
Journal of Cancer Research and Clinical Oncology, 1989
The purpose of this study was to find further experimental evidence for the postulated negative a... more The purpose of this study was to find further experimental evidence for the postulated negative association between the extent of lipid peroxidation in tumor cells and their proliferative behavior. After incubation of Ehrlich ascites tumor cells at 37 degrees C for 30 min with increasing concentrations of Fe(II) histidinate (Fe/His) the following parameters were determined: the formation of lipid hydroperoxides was measured fluorimetrically after reaction with dichlorofluorescein; 4-hydroxynonenal was determined by reversed-phase high-pressure chromatography after derivatization with dinitrophenylhydrazine; as a third parameter of lipid peroxidation the formation of 2-thiobarbituric-acid-reactive substances was determined. The proliferative activity was determined by measuring the growth rate in vivo after reimplantation i.p. of the tumor cells into mice. Trypan-blue exclusion tests for viability were performed before reimplantation. The reliability of the trypan-blue exclusion tests was checked by comparing the results with another parameter of viability, the release of the cytosolic enzyme lactate dehydrogenase. The concentration both of lipid hydroperoxides and of 2-thiobarbituric-acid-reactive substances showed a biphasic dependence on the concentration of Fe/His with maximal increase at iron concentrations of 0.25 mM and 0.1 mM respectively. 4-Hydroxynonenal, in contrast, showed a continuous increase up to 41.1 nM (corresponding to 0.58 pmol/10(9) cells) with increasing iron concentration in the range from 0.1 mM to 0.6 mM. The total number of tumor cells, when determined 5 days after reimplantation, continuously decreased with increasing iron concentration, showing half-maximal inhibition at about 0.22 mM Fe. The exclusion of the trypan-blue dye was unaffected by the presence of iron at any concentration used. Similarly, iron had no influence on the release of lactate dehydrogenase. The results support the hypothesis that 4-hydroxynonenal may act as an inhibiting messenger between endogenic lipid peroxidation and proliferation.
Elastin is an abundant extracellular matrix protein in elastic tissues, including the lungs, skin... more Elastin is an abundant extracellular matrix protein in elastic tissues, including the lungs, skin and arteries, and comprises 30-57% of the aorta by dry mass. The monomeric precursor, tropoelastin (TE), undergoes complex processing during elastogenesis to form mature elastic fibres. Peroxynitrous acid (ONOOH), a potent oxidising and nitrating agent, is formed in vivo from superoxide and nitric oxide radicals. Considerable evidence supports ONOOH formation in the inflamed artery wall, and a role for this species in the development of human atherosclerotic lesions, with ONOOH-damaged extracellular matrix implicated in lesion rupture. We demonstrate that TE is highly sensitive to ONOOH, with this resulting in extensive dimerization, fragmentation and nitration of Tyr residues to give 3-nitrotyrosine (3-nitroTyr). This occurs with equimolar or greater levels of oxidant and increases in a dose-dependent manner. Quantification of Tyr loss and 3-nitroTyr formation indicates extensive Tyr m...
Elastin is an abundant extracellular matrix protein in elastic tissues, including the lungs, skin... more Elastin is an abundant extracellular matrix protein in elastic tissues, including the lungs, skin and arteries, and comprises 30-57% of the aorta by dry mass. The monomeric precursor, tropoelastin (TE), undergoes complex processing during elastogenesis to form mature elastic fibres. Peroxynitrous acid (ONOOH), a potent oxidising and nitrating agent, is formed in vivo from superoxide and nitric oxide radicals. Considerable evidence supports ONOOH formation in the inflamed artery wall, and a role for this species in the development of human atherosclerotic lesions, with ONOOH-damaged extracellular matrix implicated in lesion rupture. We demonstrate that TE is highly sensitive to ONOOH, with this resulting in extensive dimerization, fragmentation and nitration of Tyr residues to give 3-nitrotyrosine (3-nitroTyr). This occurs with equimolar or greater levels of oxidant and increases in a dose-dependent manner. Quantification of Tyr loss and 3-nitroTyr formation indicates extensive Tyr m...
Background: Microglia, the immunocompetent cells of the CNS, rapidly respond to brain injury and ... more Background: Microglia, the immunocompetent cells of the CNS, rapidly respond to brain injury and disease by altering their morphology and phenotype to adopt an activated state. Microglia can exist broadly between two different states, namely the classical (M1) and the alternative (M2) phenotype. The first is characterized by the production of pro-inflammatory cytokines/chemokines and reactive oxygen and/or nitrogen species. In contrast, alternatively activated microglia are typified by an anti-inflammatory phenotype supporting wound healing and debris clearance. The objective of the present study was to determine the outcome of lysophosphatidic acid (LPA)-mediated signaling events on microglia polarization. Methods: LPA receptor expression and cyto-/chemokine mRNA levels in BV-2 and primary murine microglia (PMM) were determined by qPCR. M1/M2 marker expression was analyzed by Western blotting, immunofluorescence microscopy, or flow cytometry. Cyto-/chemokine secretion was quantitated by ELISA. Results: BV-2 cells express LPA receptor 2 (LPA2), 3, 5, and 6, whereas PMM express LPA1, 2, 4, 5, and 6. We show that LPA treatment of BV-2 and PMM leads to a shift towards a pro-inflammatory M1-like phenotype. LPA treatment increased CD40 and CD86 (M1 markers) and reduced CD206 (M2 marker) expression. LPA increased inducible nitric oxide synthase (iNOS) and COX-2 levels (both M1), while the M2 marker Arginase-1 was suppressed in BV-2 cells. Immunofluorescence studies (iNOS, COX-2, Arginase-1, and RELMα) extended these findings to PMM. Upregulation of M1 markers in BV-2 and PMM was accompanied by increased cyto-/chemokine transcription and secretion (IL-1β, TNFα, IL-6, CCL5, and CXCL2). The pharmacological LPA5 antagonist TCLPA5 blunted most of these pro-inflammatory responses. Conclusions: LPA drives BV-2 and PMM towards a pro-inflammatory M1-like phenotype. Suppression by TCLPA5 indicates that the LPA/LPA5 signaling axis could represent a potential pharmacological target to interfere with microglia polarization in disease.
Background: Microglia, the immunocompetent cells of the CNS, rapidly respond to brain injury and ... more Background: Microglia, the immunocompetent cells of the CNS, rapidly respond to brain injury and disease by altering their morphology and phenotype to adopt an activated state. Microglia can exist broadly between two different states, namely the classical (M1) and the alternative (M2) phenotype. The first is characterized by the production of pro-inflammatory cytokines/chemokines and reactive oxygen and/or nitrogen species. In contrast, alternatively activated microglia are typified by an anti-inflammatory phenotype supporting wound healing and debris clearance. The objective of the present study was to determine the outcome of lysophosphatidic acid (LPA)-mediated signaling events on microglia polarization. Methods: LPA receptor expression and cyto-/chemokine mRNA levels in BV-2 and primary murine microglia (PMM) were determined by qPCR. M1/M2 marker expression was analyzed by Western blotting, immunofluorescence microscopy, or flow cytometry. Cyto-/chemokine secretion was quantitated by ELISA. Results: BV-2 cells express LPA receptor 2 (LPA2), 3, 5, and 6, whereas PMM express LPA1, 2, 4, 5, and 6. We show that LPA treatment of BV-2 and PMM leads to a shift towards a pro-inflammatory M1-like phenotype. LPA treatment increased CD40 and CD86 (M1 markers) and reduced CD206 (M2 marker) expression. LPA increased inducible nitric oxide synthase (iNOS) and COX-2 levels (both M1), while the M2 marker Arginase-1 was suppressed in BV-2 cells. Immunofluorescence studies (iNOS, COX-2, Arginase-1, and RELMα) extended these findings to PMM. Upregulation of M1 markers in BV-2 and PMM was accompanied by increased cyto-/chemokine transcription and secretion (IL-1β, TNFα, IL-6, CCL5, and CXCL2). The pharmacological LPA5 antagonist TCLPA5 blunted most of these pro-inflammatory responses. Conclusions: LPA drives BV-2 and PMM towards a pro-inflammatory M1-like phenotype. Suppression by TCLPA5 indicates that the LPA/LPA5 signaling axis could represent a potential pharmacological target to interfere with microglia polarization in disease.
Trophoblast invasion into uterine tissues represents a hallmark of first trimester placental deve... more Trophoblast invasion into uterine tissues represents a hallmark of first trimester placental development. As expression of serum amyloid A4 (SAA4) occurs in tumorigenic and invasive tissues we here investigated whether SAA4 is present in trophoblast-like human AC1-M59/Jeg-3 cells and trophoblast preparations of human first trimester and term placenta. SAA4 mRNA was expressed in non-stimulated and cytokine-treated AC1-M59/Jeg-3 cells. In purified trophoblast cells SAA4 mRNA expression was upregulated at weeks 10 and 12 of pregnancy. Western-blot and immunohistochemical staining of first trimester placental tissue revealed pronounced SAA4 expression in invasive trophoblast cells indicating a potential role of SAA4 during invasion.
Trophoblast invasion into uterine tissues represents a hallmark of first trimester placental deve... more Trophoblast invasion into uterine tissues represents a hallmark of first trimester placental development. As expression of serum amyloid A4 (SAA4) occurs in tumorigenic and invasive tissues we here investigated whether SAA4 is present in trophoblast-like human AC1-M59/Jeg-3 cells and trophoblast preparations of human first trimester and term placenta. SAA4 mRNA was expressed in non-stimulated and cytokine-treated AC1-M59/Jeg-3 cells. In purified trophoblast cells SAA4 mRNA expression was upregulated at weeks 10 and 12 of pregnancy. Western-blot and immunohistochemical staining of first trimester placental tissue revealed pronounced SAA4 expression in invasive trophoblast cells indicating a potential role of SAA4 during invasion.
Peripheral leukocytes can exacerbate brain damage by release of cytotoxic mediators that disrupt ... more Peripheral leukocytes can exacerbate brain damage by release of cytotoxic mediators that disrupt blood-brain barrier (BBB) function. One of the oxidants released by activated leukocytes is hypochlorous acid (HOCl) formed via the myeloperoxidase (MPO)-H 2 O 2-Cl 2 system. In the present study we examined the role of leukocyte activation, leukocyte-derived MPO and MPO-generated oxidants on BBB function in vitro and in vivo. In a mouse model of lipopolysaccharide (LPS)-induced systemic inflammation, neutrophils that had become adherent released MPO into the cerebrovasculature. In vivo, LPSinduced BBB dysfunction was significantly lower in MPO-deficient mice as compared to wild-type littermates. Both, fMLPactivated leukocytes and the MPO-H 2 O 2-Cl 2 system inflicted barrier dysfunction of primary brain microvascular endothelial cells (BMVEC) that was partially rescued with the MPO inhibitor 4-aminobenzoic acid hydrazide. BMVEC treatment with the MPO-H 2 O 2-Cl 2 system or activated neutrophils resulted in the formation of plasmalogen-derived chlorinated fatty aldehydes. 2-chlorohexadecanal (2-ClHDA) severely compromised BMVEC barrier function and induced morphological alterations in tight and adherens junctions. In situ perfusion of rat brain with 2-ClHDA increased BBB permeability in vivo. 2-ClHDA potently activated the MAPK cascade at physiological concentrations. An ERK1/2 and JNK antagonist (PD098059 and SP600125, respectively) protected against 2-ClHDA-induced barrier dysfunction in vitro. The current data provide evidence that interference with the MPO pathway could protect against BBB dysfunction under (neuro)inflammatory conditions.
Peripheral leukocytes can exacerbate brain damage by release of cytotoxic mediators that disrupt ... more Peripheral leukocytes can exacerbate brain damage by release of cytotoxic mediators that disrupt blood-brain barrier (BBB) function. One of the oxidants released by activated leukocytes is hypochlorous acid (HOCl) formed via the myeloperoxidase (MPO)-H 2 O 2-Cl 2 system. In the present study we examined the role of leukocyte activation, leukocyte-derived MPO and MPO-generated oxidants on BBB function in vitro and in vivo. In a mouse model of lipopolysaccharide (LPS)-induced systemic inflammation, neutrophils that had become adherent released MPO into the cerebrovasculature. In vivo, LPSinduced BBB dysfunction was significantly lower in MPO-deficient mice as compared to wild-type littermates. Both, fMLPactivated leukocytes and the MPO-H 2 O 2-Cl 2 system inflicted barrier dysfunction of primary brain microvascular endothelial cells (BMVEC) that was partially rescued with the MPO inhibitor 4-aminobenzoic acid hydrazide. BMVEC treatment with the MPO-H 2 O 2-Cl 2 system or activated neutrophils resulted in the formation of plasmalogen-derived chlorinated fatty aldehydes. 2-chlorohexadecanal (2-ClHDA) severely compromised BMVEC barrier function and induced morphological alterations in tight and adherens junctions. In situ perfusion of rat brain with 2-ClHDA increased BBB permeability in vivo. 2-ClHDA potently activated the MAPK cascade at physiological concentrations. An ERK1/2 and JNK antagonist (PD098059 and SP600125, respectively) protected against 2-ClHDA-induced barrier dysfunction in vitro. The current data provide evidence that interference with the MPO pathway could protect against BBB dysfunction under (neuro)inflammatory conditions.
During the peri-implantation period, multinucleated syncytia are formed in the sheep placenta. Fo... more During the peri-implantation period, multinucleated syncytia are formed in the sheep placenta. For over 20 years the scientific consensus has been that during trophoblast syncytialization in sheep, binucleate trophoblast giant cells (BNCs) differentiate from mononuclear trophoblast cells, and individual BNCs fuse with individual luminal epithelial (LE) cells to form trinucleate cells. These trophoblast-LE syncytial plaques then grow through continued BNC migration and fusion. Therefore, LE cells are thought to be incorporated into syncytial plaques. However, these ideas were based on electron microscopy studies, without benefit of molecular markers for BNC and LE cells to support conclusions. The aim of this study was to observe interactions between BNCs and uterine LE cells using immunohistochemical localization for molecular markers for BNCs and uterine LE cells. We performed immunofluorescence staining, laser capture microdissection, and TUNEL staining on the uterine-placental tissues of sheep during early placentation. We observed: (1) syncytial cells containing more than two nuclei within the trophoblast cell layer; (2) depolarized LE cells that express caspase 3 and stain positively for TUNEL; (3) engulfment of caspase 3-positive LE cells by trophoblast giant cells (TGCs) and empty spaces within the LE layer at sites of implantation; (4) rapid enlargement of syncytial plaques; and (5) E-cadherin and TUNEL-positive cells within the uterine stroma underlying degenerating LE was coincident with accumulation of CD45-positive cells at these sites. These data suggest that during early placentation: (1) fusion between trophoblasts is not limited to the formation of BNCs, and the term 'trophoblast giant cell (TGC)' may be appropriate; (2) LE cells undergo apoptosis; (3) apoptotic LE cells are eliminated by TGCs; (4) fusion is not limited to the incorporation of new BNCs but involves the lateral fusion between growing syncytial plaques; and (5) TGCs carry apoptotic LE cells away from the uterine-placental interface for elimination by immune cells within the stroma. These data indicate that uterine LE cells are not incorporated into syncytial plaques, but are engulfed and eliminated, and that early placentation in sheep is more similar to early placentation in humans than is currently understood in that both develop mononucleated cytotrophoblast and multinucleated syncytiotrophoblast layers of entirely placental origin. The elimination of LE cells by sheep TGCs might provide insights into elimination and penetration of LE cells during human embryo implantation.
During the peri-implantation period, multinucleated syncytia are formed in the sheep placenta. Fo... more During the peri-implantation period, multinucleated syncytia are formed in the sheep placenta. For over 20 years the scientific consensus has been that during trophoblast syncytialization in sheep, binucleate trophoblast giant cells (BNCs) differentiate from mononuclear trophoblast cells, and individual BNCs fuse with individual luminal epithelial (LE) cells to form trinucleate cells. These trophoblast-LE syncytial plaques then grow through continued BNC migration and fusion. Therefore, LE cells are thought to be incorporated into syncytial plaques. However, these ideas were based on electron microscopy studies, without benefit of molecular markers for BNC and LE cells to support conclusions. The aim of this study was to observe interactions between BNCs and uterine LE cells using immunohistochemical localization for molecular markers for BNCs and uterine LE cells. We performed immunofluorescence staining, laser capture microdissection, and TUNEL staining on the uterine-placental tissues of sheep during early placentation. We observed: (1) syncytial cells containing more than two nuclei within the trophoblast cell layer; (2) depolarized LE cells that express caspase 3 and stain positively for TUNEL; (3) engulfment of caspase 3-positive LE cells by trophoblast giant cells (TGCs) and empty spaces within the LE layer at sites of implantation; (4) rapid enlargement of syncytial plaques; and (5) E-cadherin and TUNEL-positive cells within the uterine stroma underlying degenerating LE was coincident with accumulation of CD45-positive cells at these sites. These data suggest that during early placentation: (1) fusion between trophoblasts is not limited to the formation of BNCs, and the term 'trophoblast giant cell (TGC)' may be appropriate; (2) LE cells undergo apoptosis; (3) apoptotic LE cells are eliminated by TGCs; (4) fusion is not limited to the incorporation of new BNCs but involves the lateral fusion between growing syncytial plaques; and (5) TGCs carry apoptotic LE cells away from the uterine-placental interface for elimination by immune cells within the stroma. These data indicate that uterine LE cells are not incorporated into syncytial plaques, but are engulfed and eliminated, and that early placentation in sheep is more similar to early placentation in humans than is currently understood in that both develop mononucleated cytotrophoblast and multinucleated syncytiotrophoblast layers of entirely placental origin. The elimination of LE cells by sheep TGCs might provide insights into elimination and penetration of LE cells during human embryo implantation.
Background. Glioblastoma multiforme (GBM) is a highly aggressive tumor of the central nervous sys... more Background. Glioblastoma multiforme (GBM) is a highly aggressive tumor of the central nervous system with a dismal prognosis for affected patients. Aberrant protein kinase C (PKC) signaling has been implicated in gliomagenesis, and a member of the PKC-activated protein kinase D (PRKD) family, PRKD2, was identified as mediator of GBM growth in vitro and in vivo. Methods. The outcome of PRKD2 silencing and pharmacological inhibition on glioma cell proliferation was established with different glioma cell lines. Western blotting, senescence assays, co-immunoprecipitation, fluorescence activated cell sorting, quantitative PCR, and immunofluorescence microscopy were utilized to analyze downstream signaling. Results. RNA-interference (21-mer siRNA) and pharmacological inhibition (CRT0066101) of PRKD2 profoundly inhibited proliferation of p53 wt (U87MG, A172, and primary GBM2), and p53 mut (GM133, T98G, U251, and primary Gli25) glioma cells. In a xenograft experiment, PRKD2 silencing significantly delayed tumor growth of U87MG cells. PRKD2 silencing in p53 wt and p53 mut cells was associated with typical hallmarks of senescence and cell cycle arrest in G1. Attenuated AKT/PKB phosphorylation in response to PRKD2 silencing was a common observation made in p53 wt and p53 mut GBM cells. PRKD2 knockdown in p53 wt cells induced upregulation of p53, p21, and p27 expression, decreased phosphorylation of CDK2 and/or CDK4, hypophosphorylation of retinoblastoma protein (pRb), and reduced transcription of E2F1. In p53 mut GM133 and primary Gli25 cells, PRKD2 silencing increased p27 and p15 and reduced E2F1 transcription but did not affect pRb phosphorylation. Conclusions. PRKD2 silencing induces glioma cell senescence via p53-dependent and-independent pathways.
Background. Glioblastoma multiforme (GBM) is a highly aggressive tumor of the central nervous sys... more Background. Glioblastoma multiforme (GBM) is a highly aggressive tumor of the central nervous system with a dismal prognosis for affected patients. Aberrant protein kinase C (PKC) signaling has been implicated in gliomagenesis, and a member of the PKC-activated protein kinase D (PRKD) family, PRKD2, was identified as mediator of GBM growth in vitro and in vivo. Methods. The outcome of PRKD2 silencing and pharmacological inhibition on glioma cell proliferation was established with different glioma cell lines. Western blotting, senescence assays, co-immunoprecipitation, fluorescence activated cell sorting, quantitative PCR, and immunofluorescence microscopy were utilized to analyze downstream signaling. Results. RNA-interference (21-mer siRNA) and pharmacological inhibition (CRT0066101) of PRKD2 profoundly inhibited proliferation of p53 wt (U87MG, A172, and primary GBM2), and p53 mut (GM133, T98G, U251, and primary Gli25) glioma cells. In a xenograft experiment, PRKD2 silencing significantly delayed tumor growth of U87MG cells. PRKD2 silencing in p53 wt and p53 mut cells was associated with typical hallmarks of senescence and cell cycle arrest in G1. Attenuated AKT/PKB phosphorylation in response to PRKD2 silencing was a common observation made in p53 wt and p53 mut GBM cells. PRKD2 knockdown in p53 wt cells induced upregulation of p53, p21, and p27 expression, decreased phosphorylation of CDK2 and/or CDK4, hypophosphorylation of retinoblastoma protein (pRb), and reduced transcription of E2F1. In p53 mut GM133 and primary Gli25 cells, PRKD2 silencing increased p27 and p15 and reduced E2F1 transcription but did not affect pRb phosphorylation. Conclusions. PRKD2 silencing induces glioma cell senescence via p53-dependent and-independent pathways.
Indoleamine 2,3-dioxygenase (IDO) has been implicated in regulation of feto-maternal tolerance an... more Indoleamine 2,3-dioxygenase (IDO) has been implicated in regulation of feto-maternal tolerance and protection against intracellular and extracellular pathogens. We have studied the expression of IDO in the human female reproductive tract and the placenta by immunohistochemistry. Endometrial glandular and surface epithelial cells showed increasing IDO expression during the course of the menstrual cycle. In term placenta, IDO was irregularly localized to the mesenchymal core and found in isolated areas of the syncytiotrophoblast. In first trimester pregnancy, IDO was not present in placental villi, but was present in glandular epithelium of the decidua, and there were distinctly positive cells scattered in the connective tissue, sometimes in conjunction with lymphoid aggregates. The endothelium of spiral arteries and of capillaries showed some, albeit no generalized, reactivity. IDO was also present in the epithelium of cervical glands and of Fallopian tubes. Specificity of antibody binding was confirmed by Western blot analysis. IDO mRNA was detected in first trimester decidua as determined by RT-PCR. IDO is secreted, as determined by analysis of cervical mucus by high pressure liquid chromatography for the presence of the tryptophan metabolite L-kynurenine, indicating IDO activity. Our results support the concept of IDO providing a mechanism of innate immunity protecting against ascending infections in the female reproductive tract.
Indoleamine 2,3-dioxygenase (IDO) has been implicated in regulation of feto-maternal tolerance an... more Indoleamine 2,3-dioxygenase (IDO) has been implicated in regulation of feto-maternal tolerance and protection against intracellular and extracellular pathogens. We have studied the expression of IDO in the human female reproductive tract and the placenta by immunohistochemistry. Endometrial glandular and surface epithelial cells showed increasing IDO expression during the course of the menstrual cycle. In term placenta, IDO was irregularly localized to the mesenchymal core and found in isolated areas of the syncytiotrophoblast. In first trimester pregnancy, IDO was not present in placental villi, but was present in glandular epithelium of the decidua, and there were distinctly positive cells scattered in the connective tissue, sometimes in conjunction with lymphoid aggregates. The endothelium of spiral arteries and of capillaries showed some, albeit no generalized, reactivity. IDO was also present in the epithelium of cervical glands and of Fallopian tubes. Specificity of antibody binding was confirmed by Western blot analysis. IDO mRNA was detected in first trimester decidua as determined by RT-PCR. IDO is secreted, as determined by analysis of cervical mucus by high pressure liquid chromatography for the presence of the tryptophan metabolite L-kynurenine, indicating IDO activity. Our results support the concept of IDO providing a mechanism of innate immunity protecting against ascending infections in the female reproductive tract.
Myeloperoxidase (MPO), which is released from cytoplasmic granules of activated phagocytes by a d... more Myeloperoxidase (MPO), which is released from cytoplasmic granules of activated phagocytes by a degranulation process, reacts with H 2 O 2 (generated during the oxidative burst) and chloride ions to generate hypochlorous acid/hypochlorite (HOCl/OCl-). HOCl, a strong oxidant, in turn reacts with proteins to form HOCl-modified proteins. The presence of these cytotoxic chloramines during inflammatory conditions, eg, atherosclerosis and glomerular and tubulointerstitial injury, suggested that chloramines are powerful oxidants that can have profound biologic effects. In the present study, immunoreactive MPO was identified in fetal membranes and the basal plate and in maternal and fetal blood cells of human placental tissues. Monocytes/macrophages represent the major cell source for MPO in human placental tissues. Immunohistochemical findings revealed that HOCl-modified proteins are present in normal human term placenta but not during the first trimester of pregnancy (Weeks 7 to 12). HOCl-modified proteins were localized in areas formed by fetally derived cells as well as maternal decidual tissues, ie, areas where fetal extravillous trophoblast cells invade the maternal tissue and stimulate the maternal immune system. HOCl-modified proteins, products of the MPO-H 2 O 2-chloride system in vivo, were not present intracellularly, but immunoreactivity for HOCl-modified proteins was cell-associated and/or present in the extracellular matrix. Extravillous trophoblast cells, which may also exert phagocytic activities, showed no intracellular immunoreactivity for MPO or HOCl-modified proteins. The present findings indicate that the generation of HOCl-modified proteins during normal pregnancy is a physiologic rather than a pathophysiologic process.
Myeloperoxidase (MPO), which is released from cytoplasmic granules of activated phagocytes by a d... more Myeloperoxidase (MPO), which is released from cytoplasmic granules of activated phagocytes by a degranulation process, reacts with H 2 O 2 (generated during the oxidative burst) and chloride ions to generate hypochlorous acid/hypochlorite (HOCl/OCl-). HOCl, a strong oxidant, in turn reacts with proteins to form HOCl-modified proteins. The presence of these cytotoxic chloramines during inflammatory conditions, eg, atherosclerosis and glomerular and tubulointerstitial injury, suggested that chloramines are powerful oxidants that can have profound biologic effects. In the present study, immunoreactive MPO was identified in fetal membranes and the basal plate and in maternal and fetal blood cells of human placental tissues. Monocytes/macrophages represent the major cell source for MPO in human placental tissues. Immunohistochemical findings revealed that HOCl-modified proteins are present in normal human term placenta but not during the first trimester of pregnancy (Weeks 7 to 12). HOCl-modified proteins were localized in areas formed by fetally derived cells as well as maternal decidual tissues, ie, areas where fetal extravillous trophoblast cells invade the maternal tissue and stimulate the maternal immune system. HOCl-modified proteins, products of the MPO-H 2 O 2-chloride system in vivo, were not present intracellularly, but immunoreactivity for HOCl-modified proteins was cell-associated and/or present in the extracellular matrix. Extravillous trophoblast cells, which may also exert phagocytic activities, showed no intracellular immunoreactivity for MPO or HOCl-modified proteins. The present findings indicate that the generation of HOCl-modified proteins during normal pregnancy is a physiologic rather than a pathophysiologic process.
α-Tocopherol (αTocH), a member of the vitamin E family, is essential for normal neurological func... more α-Tocopherol (αTocH), a member of the vitamin E family, is essential for normal neurological function. Despite the importance of αTocH transport into the CNS, transfer mechanisms across the blood-brain barrier (BBB) are not entirely clear. We here investigate whether afamin, a known αTocH-binding protein, contributes to αTocH transport across an in vitro model of the BBB consisting of primary porcine brain capillary endothelial cells (BCEC) and basolaterally cultured astrocytoma cells. Exogenously added afamin had no adverse effects on BCEC viability or barrier function and was transported across BCEC Transwell cultures. Furthermore, αTocH transport across polarized BCEC cultures to astrocytoma cells is facilitated by afamin, though to a lesser extent than by high-density lipoprotein-mediated transport, an essential and in vivo operating αTocH import pathway at the cerebrovasculature. We also demonstrate that porcine BCEC endogenously synthesize afamin. In line with these in vitro findings, afamin was detected by immunohistochemistry in porcine, human postmortem, and mouse brain, where prominent staining was observed almost exclusively in the cerebrovasculature. The demonstration of afamin mRNA expression in isolated brain capillaries suggests that afamin might be a new family member of binding/transport proteins contributing to αTocH homeostasis at the BBB in vivo.
Uploads
Papers by Astrid Hammer