Greater design flexibility and newer miniaturization techniques are highly sought after by the co... more Greater design flexibility and newer miniaturization techniques are highly sought after by the commercial antenna industry and researchers. Micro-Strip Patch Antenna (MSPA) is finding huge applications in various fields of communication. In the present paper, the novel idea of Double-Elliptical Micro-strip Patch Antenna (DEMPA) is proposed for antenna miniaturization and higher design flexibility. Double-Elliptical Patch (DEP) is made as the combination of two half-elliptical patches having the same minor axis and different semi-major axes or the same major axis and different semi-minor axes. A DEP with different lengths of horizontally arranged semi-major axes and centrally given feed was considered here. The length of semi-major axis for right half-elliptical patch was varied while keeping the length of semi-major axis for left half-elliptical patch fixed. Design of DEMPA was carried out using Ansoft HFSS software, and the antenna has been fabricated and tested. The measured results were in good agreement with the simulated ones. The percentage reduction in effective patch area was found to be 8.33 for DEMPA compared to the corresponding elliptical patch antenna. The DEMPA covered the entire frequency range of Ultra Wide Band (UWB). With this novel shape, greater design flexibility along with miniaturization is achieved. The axial ratio analysis showed that the resulted antenna was of linear polarization.
Greater design flexibility and newer miniaturization techniques are highly sought after by the co... more Greater design flexibility and newer miniaturization techniques are highly sought after by the commercial antenna industry and researchers. Micro-Strip Patch Antenna (MSPA) is finding huge applications in various fields of communication. In the present paper, the novel idea of Double-Elliptical Micro-strip Patch Antenna (DEMPA) is proposed for antenna miniaturization and higher design flexibility. Double-Elliptical Patch (DEP) is made as the combination of two half-elliptical patches having the same minor axis and different semi-major axes or the same major axis and different semi-minor axes. A DEP with different lengths of horizontally arranged semi-major axes and centrally given feed was considered here. The length of semi-major axis for right half-elliptical patch was varied while keeping the length of semi-major axis for left half-elliptical patch fixed. Design of DEMPA was carried out using Ansoft HFSS software, and the antenna has been fabricated and tested. The measured results were in good agreement with the simulated ones. The percentage reduction in effective patch area was found to be 8.33 for DEMPA compared to the corresponding elliptical patch antenna. The DEMPA covered the entire frequency range of Ultra Wide Band (UWB). With this novel shape, greater design flexibility along with miniaturization is achieved. The axial ratio analysis showed that the resulted antenna was of linear polarization.
International Journal of Innovative Technology and Exploring Engineering, 2019
Elliptical Micro-strip Patch Antenna (EMPA) has been emerged as a peculiar and significant catego... more Elliptical Micro-strip Patch Antenna (EMPA) has been emerged as a peculiar and significant category among the different shaped micro-strip patch antennas because of its circular polarization and dual-resonant frequency features with a single feed. Elliptical and its derived shapes such as semi-elliptical, half-elliptical, slotted-elliptical and elliptical ring are found to be particularly instrumental for bandwidth enhancement and these antennas find great applications in Ultra Wide Band (UWB) and Super Wide Band (SWB) communications. Compared to antennas with circular or rectangular shapes, the design of EMPA is a research area of high potential as there is higher flexibility in its design due to more degrees of freedom. The reported literature in the field of EMPA is very less and there is ample scope for new researchers to work on. This review paper is an attempt to summarize and critically assess the-state-of-the-art design techniques as reported in literature and understand their effects on performance of elliptical patch antenna for suggesting new research fronts in the field of EMPA.
Greater design flexibility and newer miniaturization techniques are highly sought after by the co... more Greater design flexibility and newer miniaturization techniques are highly sought after by the commercial antenna industry and researchers. Micro-Strip Patch Antenna (MSPA) is finding huge applications in various fields of communication. In the present paper, the novel idea of Double-Elliptical Micro-strip Patch Antenna (DEMPA) is proposed for antenna miniaturization and higher design flexibility. Double-Elliptical Patch (DEP) is made as the combination of two half-elliptical patches having the same minor axis and different semi-major axes or the same major axis and different semi-minor axes. A DEP with different lengths of horizontally arranged semi-major axes and centrally given feed was considered here. The length of semi-major axis for right half-elliptical patch was varied while keeping the length of semi-major axis for left half-elliptical patch fixed. Design of DEMPA was carried out using Ansoft HFSS software, and the antenna has been fabricated and tested. The measured results were in good agreement with the simulated ones. The percentage reduction in effective patch area was found to be 8.33 for DEMPA compared to the corresponding elliptical patch antenna. The DEMPA covered the entire frequency range of Ultra Wide Band (UWB). With this novel shape, greater design flexibility along with miniaturization is achieved. The axial ratio analysis showed that the resulted antenna was of linear polarization.
Greater design flexibility and newer miniaturization techniques are highly sought after by the co... more Greater design flexibility and newer miniaturization techniques are highly sought after by the commercial antenna industry and researchers. Micro-Strip Patch Antenna (MSPA) is finding huge applications in various fields of communication. In the present paper, the novel idea of Double-Elliptical Micro-strip Patch Antenna (DEMPA) is proposed for antenna miniaturization and higher design flexibility. Double-Elliptical Patch (DEP) is made as the combination of two half-elliptical patches having the same minor axis and different semi-major axes or the same major axis and different semi-minor axes. A DEP with different lengths of horizontally arranged semi-major axes and centrally given feed was considered here. The length of semi-major axis for right half-elliptical patch was varied while keeping the length of semi-major axis for left half-elliptical patch fixed. Design of DEMPA was carried out using Ansoft HFSS software, and the antenna has been fabricated and tested. The measured results were in good agreement with the simulated ones. The percentage reduction in effective patch area was found to be 8.33 for DEMPA compared to the corresponding elliptical patch antenna. The DEMPA covered the entire frequency range of Ultra Wide Band (UWB). With this novel shape, greater design flexibility along with miniaturization is achieved. The axial ratio analysis showed that the resulted antenna was of linear polarization.
International Journal of Innovative Technology and Exploring Engineering, 2019
Elliptical Micro-strip Patch Antenna (EMPA) has been emerged as a peculiar and significant catego... more Elliptical Micro-strip Patch Antenna (EMPA) has been emerged as a peculiar and significant category among the different shaped micro-strip patch antennas because of its circular polarization and dual-resonant frequency features with a single feed. Elliptical and its derived shapes such as semi-elliptical, half-elliptical, slotted-elliptical and elliptical ring are found to be particularly instrumental for bandwidth enhancement and these antennas find great applications in Ultra Wide Band (UWB) and Super Wide Band (SWB) communications. Compared to antennas with circular or rectangular shapes, the design of EMPA is a research area of high potential as there is higher flexibility in its design due to more degrees of freedom. The reported literature in the field of EMPA is very less and there is ample scope for new researchers to work on. This review paper is an attempt to summarize and critically assess the-state-of-the-art design techniques as reported in literature and understand their effects on performance of elliptical patch antenna for suggesting new research fronts in the field of EMPA.
Uploads
Papers by Jerry V Jose