APC(adenomatous polyposis coli)は、ヒトではAPC遺伝子によってコードされるタンパク質である[4]。DP2.5(deleted in polyposis 2.5)としても知られる。APCタンパク質はβ-カテニンの濃度を負に制御する調節因子であり、細胞接着に関与するE-カドヘリンと相互作用する。APC遺伝子の変異大腸がんにつながる可能性がある[5]

APC
PDBに登録されている構造
PDBオルソログ検索: RCSB PDBe PDBj
PDBのIDコード一覧

1DEB, 1EMU, 1JPP, 1M5I, 1T08, 1TH1, 1V18, 2RQU, 3AU3, 3NMW, 3NMX, 3NMZ, 3QHE, 3RL7, 3RL8, 3T7U, 4G69, 4YJL, 4YK6, 4YJE

識別子
記号APC, BTPS2, DP2, DP2.5, DP3, GS, PPP1R46, adenomatous polyposis coli, WNT signaling pathway regulator, Genes
外部IDOMIM: 611731 MGI: 88039 HomoloGene: 30950 GeneCards: APC
遺伝子の位置 (マウス)
18番染色体 (マウス)
染色体18番染色体 (マウス)[1]
18番染色体 (マウス)
APC遺伝子の位置
APC遺伝子の位置
バンドデータ無し開始点34,220,924 bp[1]
終点34,322,552 bp[1]
RNA発現パターン
さらなる参照発現データ
遺伝子オントロジー
分子機能 gamma-catenin binding
プロテインキナーゼ結合
microtubule plus-end binding
microtubule binding
cadherin binding
protein kinase regulator activity
血漿タンパク結合
beta-catenin binding
ubiquitin protein ligase binding
identical protein binding
dynein complex binding
細胞の構成要素 細胞骨格
接着結合
beta-catenin destruction complex
核質
細胞質
cell projection
細胞質基質
catenin complex
細胞結合
細胞核
膜状仮足

Wnt signalosome
中心体
動原体
bicellular tight junction
ruffle membrane
細胞膜
lateral plasma membrane
perinuclear region of cytoplasm
微小管
cytoplasmic microtubule
生物学的プロセス negative regulation of cell population proliferation
negative regulation of cyclin-dependent protein serine/threonine kinase activity
mitotic spindle assembly checkpoint signaling
positive regulation of cell migration
positive regulation of protein catabolic process
bicellular tight junction assembly
regulation of microtubule-based process
positive regulation of pseudopodium assembly
regulation of attachment of spindle microtubules to kinetochore
cellular response to DNA damage stimulus
negative regulation of Wnt signaling pathway
細胞接着
mitotic cytokinesis
negative regulation of microtubule depolymerization
positive regulation of apoptotic process
canonical Wnt signaling pathway
遊走
beta-catenin destruction complex assembly
beta-catenin destruction complex disassembly
negative regulation of canonical Wnt signaling pathway
Wntシグナル経路
protein deubiquitination
insulin receptor signaling pathway
positive regulation of cell death
protein homooligomerization
positive regulation of protein localization to centrosome
protein-containing complex assembly
cell fate specification
パターン指定プロセス
regulation of cell differentiation
positive regulation of cold-induced thermogenesis
出典:Amigo / QuickGO
オルソログ
ヒトマウス
Entrez
Ensembl
UniProt
RefSeq
(mRNA)

NM_001127511
NM_000038
NM_001127510

NM_007462
NM_001360979
NM_001360980

RefSeq
(タンパク質)
NP_000029
NP_001120982
NP_001120983
NP_001341824
NP_001341825

NP_001341826
NP_001341827
NP_001341828
NP_001341829
NP_001341830
NP_001341831
NP_001341832
NP_001341833
NP_001341834
NP_001341835

n/a

場所
(UCSC)
n/aChr : 34.22 – 34.32 Mb
PubMed検索[2][3]
ウィキデータ
閲覧/編集 ヒト閲覧/編集 マウス

APCがん抑制遺伝子に分類される。がん抑制遺伝子は、癌性腫瘍につながる可能性のある、無制御な細胞増殖を防ぐ。APC遺伝子から産生されるタンパク質は、細胞の腫瘍への成長が決定されるいくつかの細胞過程で重要な役割を果たしている。APCタンパク質は、どの頻度で細胞分裂を行うか、組織内で他の細胞とどのように接着するか、細胞がどのように極性化するか、三次元構造への形態変化[6]、また細胞が組織内をまたは組織から離れて移動するかどうかの制御を助けている。このタンパク質は細胞分裂の際の染色体数の保証も助ける。APCタンパク質は主に他のタンパク質、特に細胞接着やシグナル伝達に関与するタンパク質のとの結合によってこれらの役割をこなしている。特に、APCタンパク質によるβ-カテニンの制御は重要である(Wntシグナル経路を参照)。β-カテニンの調節によって、細胞分裂促進遺伝子の高頻度での活性化が防がれ、細胞の過剰増殖が防止されている。

ヒトのAPC遺伝子は5番染色体英語版の長腕(q)のバンドq22.2(5q22.2)に位置している。APC遺伝子はIRESを含んでいることが示されている。

構造

編集

ヒトのAPCタンパク質は2843アミノ酸からなり、予測分子量は311646である。N末端のドメインのいくつかは原子分解能で構造が解かれているが、タンパク質の大部分は天然変性状態であると予測されている。アミノ酸残基800番から2843番までの領域が生体内でも構造を取らないのか、おそらく未同定のタンパク質との相互作用によって安定な複合体を形成しているのかは不明である[7]。近年、APCの中央部のMCR(mutation cluster region)と呼ばれる変異密集領域がin vitroで天然変性状態であることが実験的に確認された[8]

がんにおける役割

編集

大腸がんで最も一般的な変異は、APCを不活性化する変異である。APCに不活性化変異が存在しない場合、高頻度でβ-カテニンに活性化変異が存在する。APCの変異は遺伝性であることも、体細胞で散発的に生じたものであることもあるが、多くの場合、他の遺伝子の変異によってDNAの変異が修復不能になった結果生じたものである。がんを発症するためには、APC遺伝子の双方のアレルに変異が生じていなければならない。APCまたはβ-カテニンの変異が発がん性のものとなるためには、続いて他の変異が生じる必要があるが、APC不活性化変異の保因者の場合、40歳までの大腸がんのリスクはほぼ100%である[5]

家族性大腸腺腫症(FAP)は、APC遺伝子の遺伝的な不活性化変異によって引き起こされる。FAPと関係したAPC遺伝子の変異は800種類以上記載されており、こうした変異の大部分は切り詰められた、非機能的なAPCタンパク質の産生を引き起こすものである[9][10]。こうした短いタンパク質は細胞の過増殖によるポリープの形成を抑制することができず、またポリープは癌性となりうる。FAPで最も一般的な変異はAPCタンパク質の1309番の部位に生じる5塩基対の欠失であり、フレームシフトが生じる[11]

APCタンパク質の1307番残基がイソロイシンからリジンに置換された変異(I1307K またはIle1307Lysと書かれる)は、アシュケナジムユダヤ人の約6%が保有している。この変異は当初は無害であると考えられていたが、大腸がんのリスクの10–20%の上昇と関係していることが近年示された[12]

増殖の調節

編集

APCタンパク質は通常、SAMPリピートなどを介した相互作用によって、アキシンGSK-3GSK-3α英語版/β)、とともにβ-カテニン分解複合体(β-catenin destruction complex)を構成している[13]。β-カテニンに対する最初のリン酸化を行うカゼインキナーゼ1(CK1)の助けによって、GSK-3は2つ目以降のリン酸化を行うことができるようになる。これによってβ-カテニンはユビキチン化の標的となり、プロテアソームによって分解される。その結果、β-カテニンのへの移行は妨げられる。Wntシグナルは分解複合体の解体を引き起こしてβ-カテニンを安定化し、β-カテニンは核へ移行して増殖遺伝子の転写因子として機能する[14][15]。APCの他の機能として、APCは微小管へ標的化されて微小管を安定化しているのに加えて、PDZ結合ドメインを介した相互作用によってアクチンフィラメントとも間接的に結合している可能性がある[16]

APCによるβ-カテニンの結合は、SAMPリピートを介したアキシンとの結合と同様、分解複合体中でのタンパク質の機能に必要不可欠であると長らく考えられてきた[17]。こうしたモデルは、一般的なAPCのMCRの機能喪失変異ではいくつかのβ-カテニン結合部位とSAMPリピートが除去されているという観察によって裏付けられていた。しかし、 APCとβ-カテニンの直接的な相互作用はβ-カテニンの分解には必須ではないことが近年示され、分解の効率を高める役割を果たしていると考えられている[18]

変異

編集
 
家族性大腸腺腫症の患者の腸

APCの変異は大腸がんなどのがんで初期に生じていることが多い[7]。FAPの患者には生殖細胞系列変異が存在し、そのほぼすべてがナンセンス変異またはフレームシフト変異で、切り詰められたAPCタンパク質の産生が引き起こされている[19]。生殖細胞系列変異は1061番と1309番アミノ酸残基に集中しており、一方、体細胞変異はMCRと呼ばれる1286–1513番残基の領域に集中している。こうした変異によって、アキシン結合部位やβ-カテニン結合部位である20-aaリピートの多くが失われる[20]

神経学的役割

編集

APCはニコチン性アセチルコリン受容体シナプス後部位に局在させるタンパク質複合体を形成する。さらにこの複合体はシナプス後のニューロリギンを介してシナプス前のニューレキシンへ逆行性シグナル伝達を行い、シナプスの成熟に関与していると考えられている[21]。APCの多型自閉症スペクトラム障害とも関係しており[22]、こうしたAPCの役割は神経機能に重要な役割を果たしている可能性がある[21]

相互作用

編集

APCは次に挙げる因子と相互作用することが示されている。

出典

編集
  1. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000005871 - Ensembl, May 2017
  2. ^ Human PubMed Reference:
  3. ^ Mouse PubMed Reference:
  4. ^ “Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients”. Science 253 (5020): 665–9. (August 1991). Bibcode1991Sci...253..665N. doi:10.1126/science.1651563. PMID 1651563. 
  5. ^ a b “Molecular origins of cancer: Molecular basis of colorectal cancer”. The New England Journal of Medicine 361 (25): 2449–60. (December 2009). doi:10.1056/NEJMra0804588. PMC 2843693. PMID 20018966. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2843693/. 
  6. ^ “The APC tumor suppressor is required for epithelial cell polarization and three-dimensional morphogenesis”. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1853 (3): 711–23. (March 2015). doi:10.1016/j.bbamcr.2014.12.036. PMC 4327896. PMID 25578398. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4327896/. 
  7. ^ a b “Messing up disorder: how do missense mutations in the tumor suppressor protein APC lead to cancer?”. Molecular Cancer 10: 101. (2011). doi:10.1186/1476-4598-10-101. PMC 3170638. PMID 21859464. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3170638/. 
  8. ^ “Large extent of disorder in Adenomatous Polyposis Coli offers a strategy to guard Wnt signalling against point mutations”. PLOS ONE 8 (10): e77257. (2013). Bibcode2013PLoSO...877257M. doi:10.1371/journal.pone.0077257. PMC 3793970. PMID 24130866. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3793970/. 
  9. ^ Laurent-Puig, P.; Béroud, C.; Soussi, T. (1998-01-01). “APC gene: database of germline and somatic mutations in human tumors and cell lines”. Nucleic Acids Research 26 (1): 269–270. doi:10.1093/nar/26.1.269. ISSN 0305-1048. PMC 147178. PMID 9399850. https://pubmed.ncbi.nlm.nih.gov/9399850. 
  10. ^ Moisio, A.-L.; Järvinen, H.; Peltomäki, P. (2002-06). “Genetic and clinical characterisation of familial adenomatous polyposis: a population based study”. Gut 50 (6): 845–850. doi:10.1136/gut.50.6.845. ISSN 0017-5749. PMC 1773245. PMID 12010888. https://pubmed.ncbi.nlm.nih.gov/12010888. 
  11. ^ Caspari, R.; Friedl, W.; Mandl, M.; Möslein, G.; Kadmon, M.; Knapp, M.; Jacobasch, K. H.; Ecker, K. W. et al. (1994-03-12). “Familial adenomatous polyposis: mutation at codon 1309 and early onset of colon cancer”. Lancet (London, England) 343 (8898): 629–632. doi:10.1016/s0140-6736(94)92634-4. ISSN 0140-6736. PMID 7906810. https://pubmed.ncbi.nlm.nih.gov/7906810. 
  12. ^ Familial Adenomatous Polyposis” (英語). stanfordhealthcare.org. 2020年10月11日閲覧。
  13. ^ Kimelman, D.; Xu, W. (2006-12-04). “beta-catenin destruction complex: insights and questions from a structural perspective”. Oncogene 25 (57): 7482–7491. doi:10.1038/sj.onc.1210055. ISSN 0950-9232. PMID 17143292. https://pubmed.ncbi.nlm.nih.gov/17143292. 
  14. ^ Leber, M. F., Efferth, T."Molecular principles of cancer invasion and metastasis (Review)". International Journal of Oncology 34, no. 4 (2009): 881-895. https://doi.org/10.3892/ijo_00000214
  15. ^ Rao, Tata Purushothama; Kühl, Michael (2010-06-25). “An updated overview on Wnt signaling pathways: a prelude for more”. Circulation Research 106 (12): 1798–1806. doi:10.1161/CIRCRESAHA.110.219840. ISSN 1524-4571. PMID 20576942. https://pubmed.ncbi.nlm.nih.gov/20576942. 
  16. ^ Dikovskaya, D.; Zumbrunn, J.; Penman, G. A.; Näthke, I. S. (2001-09). “The adenomatous polyposis coli protein: in the limelight out at the edge”. Trends in Cell Biology 11 (9): 378–384. doi:10.1016/s0962-8924(01)02069-4. ISSN 0962-8924. PMID 11514192. https://pubmed.ncbi.nlm.nih.gov/11514192. 
  17. ^ “The β-catenin destruction complex”. Cold Spring Harbor Perspectives in Biology 5 (1): a007898. (January 2013). doi:10.1101/cshperspect.a007898. PMC 3579403. PMID 23169527. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3579403/. 
  18. ^ “Testing models of the APC tumor suppressor/β-catenin interaction reshapes our view of the destruction complex in Wnt signaling”. Genetics 197 (4): 1285–302. (August 2014). doi:10.1534/genetics.114.166496. PMC 4125400. PMID 24931405. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4125400/. 
  19. ^ De Queiroz Rossanese, Lillian Barbosa; De Lima Marson, Fernando Augusto; Ribeiro, José Dirceu; Coy, Claudio Saddy Rodrigues; Bertuzzo, Carmen Silvia (2013-11). “APC germline mutations in families with familial adenomatous polyposis”. Oncology Reports 30 (5): 2081–2088. doi:10.3892/or.2013.2681. ISSN 1791-2431. PMID 23970361. https://pubmed.ncbi.nlm.nih.gov/23970361. 
  20. ^ Fearnhead, N. S.; Britton, M. P.; Bodmer, W. F. (2001-04). “The ABC of APC”. Human Molecular Genetics 10 (7): 721–733. doi:10.1093/hmg/10.7.721. ISSN 0964-6906. PMID 11257105. https://pubmed.ncbi.nlm.nih.gov/11257105. 
  21. ^ a b “The postsynaptic adenomatous polyposis coli (APC) multiprotein complex is required for localizing neuroligin and neurexin to neuronal nicotinic synapses in vivo” (英語). The Journal of Neuroscience 30 (33): 11073–85. (August 2010). doi:10.1523/JNEUROSCI.0983-10.2010. PMC 2945243. PMID 20720115. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2945243/. 
  22. ^ Zhou, Xiao-Lei; Giacobini, MaiBritt; Anderlid, Britt-Marie; Anckarsäter, Henrik; Omrani, Davood; Gillberg, Christopher; Nordenskjöld, Magnus; Lindblom, Annika (2007-04-05). “Association of adenomatous polyposis coli (APC) gene polymorphisms with autism spectrum disorder (ASD)”. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics: The Official Publication of the International Society of Psychiatric Genetics 144B (3): 351–354. doi:10.1002/ajmg.b.30415. ISSN 1552-4841. PMID 17221838. https://pubmed.ncbi.nlm.nih.gov/17221838. 
  23. ^ “Asef, a link between the tumor suppressor APC and G-protein signaling”. Science 289 (5482): 1194–7. (August 2000). Bibcode2000Sci...289.1194K. doi:10.1126/science.289.5482.1194. PMID 10947987. 
  24. ^ “Axin, an inhibitor of the Wnt signalling pathway, interacts with beta-catenin, GSK-3beta and APC and reduces the beta-catenin level”. Genes to Cells 3 (6): 395–403. (June 1998). doi:10.1046/j.1365-2443.1998.00198.x. PMID 9734785. 
  25. ^ “A role for the Adenomatous Polyposis Coli protein in chromosome segregation”. Nature Cell Biology 3 (4): 429–32. (April 2001). doi:10.1038/35070123. PMID 11283619. 
  26. ^ a b “Association of the APC tumor suppressor protein with catenins”. Science 262 (5140): 1734–7. (December 1993). Bibcode1993Sci...262.1734S. doi:10.1126/science.8259519. PMID 8259519. 
  27. ^ “Expression and interaction of different catenins in colorectal carcinoma cells”. International Journal of Molecular Medicine 8 (6): 695–8. (December 2001). doi:10.3892/ijmm.8.6.695. PMID 11712088. 
  28. ^ “Differences between the interaction of beta-catenin with non-phosphorylated and single-mimicked phosphorylated 20-amino acid residue repeats of the APC protein”. Journal of Molecular Biology 327 (2): 359–67. (March 2003). doi:10.1016/S0022-2836(03)00144-X. PMID 12628243. 
  29. ^ “The interaction between beta-catenin, GSK3beta and APC after motogen induced cell-cell dissociation, and their involvement in signal transduction pathways in prostate cancer”. International Journal of Oncology 18 (4): 843–7. (April 2001). doi:10.3892/ijo.18.4.843. PMID 11251183. 
  30. ^ “Pin1 regulates turnover and subcellular localization of beta-catenin by inhibiting its interaction with APC”. Nature Cell Biology 3 (9): 793–801. (September 2001). doi:10.1038/ncb0901-793. PMID 11533658. 
  31. ^ a b c “Association and regulation of casein kinase 2 activity by adenomatous polyposis coli protein”. Proceedings of the National Academy of Sciences of the United States of America 99 (9): 5959–64. (April 2002). Bibcode2002PNAS...99.5959K. doi:10.1073/pnas.092143199. PMC 122884. PMID 11972058. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC122884/. 
  32. ^ “DAP-1, a novel protein that interacts with the guanylate kinase-like domains of hDLG and PSD-95”. Genes to Cells 2 (6): 415–24. (June 1997). doi:10.1046/j.1365-2443.1997.1310329.x. PMID 9286858. 
  33. ^ “Molecular mechanisms of beta-catenin recognition by adenomatous polyposis coli revealed by the structure of an APC-beta-catenin complex”. The EMBO Journal 20 (22): 6203–12. (November 2001). doi:10.1093/emboj/20.22.6203. PMC 125720. PMID 11707392. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC125720/. 
  34. ^ a b “The tyrosine kinase substrate p120cas binds directly to E-cadherin but not to the adenomatous polyposis coli protein or alpha-catenin”. Molecular and Cellular Biology 15 (9): 4819–24. (September 1995). doi:10.1128/mcb.15.9.4819. PMC 230726. PMID 7651399. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC230726/. 
  35. ^ “Cloning and characterization of NE-dlg: a novel human homolog of the Drosophila discs large (dlg) tumor suppressor protein interacts with the APC protein”. Oncogene 14 (20): 2425–33. (May 1997). doi:10.1038/sj.onc.1201087. PMID 9188857. 
  36. ^ “Identification of a link between the tumour suppressor APC and the kinesin superfamily”. Nature Cell Biology 4 (4): 323–7. (April 2002). doi:10.1038/ncb779. PMID 11912492. 
  37. ^ “APC binds to the novel protein EB1”. Cancer Research 55 (14): 2972–7. (July 1995). PMID 7606712. 
  38. ^ “Critical role for the EB1 and APC interaction in the regulation of microtubule polymerization”. Current Biology 11 (13): 1062–7. (July 2001). doi:10.1016/S0960-9822(01)00297-4. PMID 11470413. 
  39. ^ “Association of plakoglobin with APC, a tumor suppressor gene product, and its regulation by tyrosine phosphorylation”. Biochemical and Biophysical Research Communications 203 (1): 519–22. (August 1994). doi:10.1006/bbrc.1994.2213. PMID 8074697. 
  40. ^ “Siah-1 mediates a novel beta-catenin degradation pathway linking p53 to the adenomatous polyposis coli protein”. Molecular Cell 7 (5): 927–36. (May 2001). doi:10.1016/S1097-2765(01)00241-6. PMID 11389840. 
  41. ^ “Activator protein 2alpha associates with adenomatous polyposis coli/beta-catenin and Inhibits beta-catenin/T-cell factor transcriptional activity in colorectal cancer cells”. The Journal of Biological Chemistry 279 (44): 45669–75. (October 2004). doi:10.1074/jbc.M405025200. PMC 2276578. PMID 15331612. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2276578/. 
  42. ^ “Binding of the adenomatous polyposis coli protein to microtubules increases microtubule stability and is regulated by GSK3 beta phosphorylation”. Current Biology 11 (1): 44–9. (January 2001). doi:10.1016/S0960-9822(01)00002-1. PMID 11166179. 
  43. ^ “The coiled coil region (amino acids 129-250) of the tumor suppressor protein adenomatous polyposis coli (APC). Its structure and its interaction with chromosome maintenance region 1 (Crm-1)”. The Journal of Biological Chemistry 277 (35): 32332–8. (August 2002). doi:10.1074/jbc.M203990200. PMID 12070164. 

関連文献

編集

関連項目

編集

外部リンク

編集