Kerimasite

minerale

La kerimasite, chiamata anche (prima del 2010) kimmeyite, kimzeyite-Fe o ferrikimzeyite (simbolo IMA: Kms[6]), è un minerale e un raro silicato del supergruppo del granato e del gruppo della schorlomite con la composizione chimica idealizzata Ca3Zr2(SiFe3+2)O12.[2]

Kerimasite
Classificazione Strunz9.AD.25[1]
Formula chimicaCa3Zr2(SiFe3+2)O12[2]
Proprietà cristallografiche
Sistema cristallinocubico[2]
Parametri di cellaa = 12,598 Å (sintetico)[3]

12,549 Å (naturale)[4]

Gruppo puntuale4/m 3 2/m[1]
Gruppo spazialeIa3d (nº 230)[2]
Proprietà fisiche
Densità calcolata4,104[5] g/cm³
Durezza (Mohs)~7[5]
Fratturairregolare[5]
Coloremarrone chiaro o scuro (al naturale)[4];
giallastro (sintetico)[3]
Lucentezzavitrea[1]
Opacitàtrasparente[1]
Strisciomarrone chiaro
Diffusionerara
Si invita a seguire lo schema di Modello di voce – Minerale

Etimologia e storia

modifica

Dagli anni '60, i granati ricchi di zirconio sono stati descritti in tutto il mondo con il nome di kimzeyite, anche se solo in poche località. La maggior parte di queste kimzeyiti conteneva più ferro che alluminio, ma è stato solo nel 2010 che Zaitsev e collaboratori hanno descritto la kerimasite (contenente Fe3+) come un nuovo minerale e l'hanno riconosciuta dall'Associazione Mineralogica Internazionale (IMA). Prende il nome dal luogo in cui è stata trovata, nel distretto di Ngorongoro, nella regione di Arusha in Tanzania.[4]

Nel corso di studi sistematici sul comportamento di mescolamento dei granati del gruppo della schorlomite, la kerimasite fu sintetizzata nel 1967 da Ito e Frondel[7] e nel 1993 da Yamakawa e i suoi colleghi.[3]

Ancora in corso lo studio di kerimasite, elbrusite e altri granati contenenti afnio e zirconio per quanto riguarda la loro idoneità per lo smaltimento finale di scorie radioattive ad alta attività provenienti da centrali nucleari.[8][9][10]

Classificazione

modifica

Secondo l'attuale classificazione dell'Associazione Mineralogica Internazionale (IMA), la kerimasite appartiene al supergruppo del granato, dove forma il gruppo della schorlomite con 10 cariche positive nella posizione coordinata del reticolo tetraedrico insieme a irinarassite, hutcheonite, schorlomite, kimzeyite e toturite.[11]

La 9ª edizione della sistematica minerale di Strunz, valida dal 2001 e utilizzata dall'IMA, non elenca la kerimasite. Qui sarebbe elencata nella classe dei "Nesosilicati". Questa viene ulteriormente suddivisa in base all'eventuale presenza di altri anioni e alla coordinazione dei cationi coinvolti, in modo che il minerale sia classificato in base alla sua composizione nella suddivisione "Nesosilicati senza anioni aggiuntivi; cationi in coordinazione [6] e/o maggiore" dove, insieme ad almandino, andradite, calderite, goldmanite, grossularia, henritermierite, holtstamite, katoite, kimzeyite, knorringite, majorite, morimotoite, piropo, schorlomite, spessartina e uvarovite formsa il "gruppo del granato" con il sistema nº 9.AD.25.[1] Di questo gruppo facevano parte anche i composti granati blythite, hibschite, idroandradite e skiagite, che non sono più considerati minerali. La wadalite, a quel tempo ancora raggruppata tra i granati, si è dimostrata strutturalmente diversa ed è ora assegnata a un gruppo separato con la clormayenite e la fluormayenite.[11] D'altra parte, i granati irinarassite, hutcheonite, toturite, menzerite-(Y) ed eringaite, che sono state descritte dopo il 2001, sarebbero state smistate nel gruppo del granato.

Anche la classificazione dei minerali di Dana, che viene utilizzata principalmente nel mondo anglosassone, classificherebbe la kerimasite nella divisione dei "minerali nesosilicati". Qui sarebbe insieme a schorlomite, kimzeyite e morimotoite nel "gruppo del granato (serie della schorlomite-kimzeyite)" con il sistema nº 51.04.03c all'interno della suddivisione "Nesoilicati: gruppi SiO4 solo con cationi in coordinazione [6] e/o maggiore".

Chimica

modifica

La kerimasite è lo zirconio-analogo della schorlomite e forma cristalli misti complessi principalmente con kimzeyite, schorlomite e andradite. La composizione misurata dalla località tipo è:

 [4]

Il contenuto di alluminio in posizione   è dovuto alla formazione di cristalli misti con kimzeyite  , corrispondente alla seguente reazione di scambio:[4][3]

 

A temperature superiori a 700 °C, si ha una miscelazione completa di kimzeyite sintetica e kerimasite. A temperature più basse, la miscibilità di questi componenti è limitata e si formano due granati coesistenti, uno ricco di kimzeyite e uno ricco di kerimasite.[3] Questa segregazione è stata osservata anche nelle kerimasiti naturali della località tipo.[12]

Il contenuto di titanio in posizione   può essere ottenuto come miscela di schorlomite   secondo la reazione di scambio

 [4]

Inoltre, la kerimasite forma cristalli misti con andradite   secondo la reazione di scambio:[4][7]

 

e con un ipotetico niobio-analogo Nb5+ dell'usturite   corrispondente alla reazione di scambio:

 [4]

La kerimasite può contenere fino al 24% di triossido di uranio (UO3) in peso. Le composizioni delle kerimasiti naturali contenenti uranio seguono un andamento lineare corrispondente a una formazione cristallina mista di kerimasite con un analogo U5+ dell'usturite  . Per i granati naturali studiati finora, tuttavia, si presume che l'uranio sia incorporato come U6+ attraverso la combinazione di due reazioni di scambio:[11][13]

1) installazione di un componente yafsoanite U6+-Fe2+ di conseguenza

 

2) formazione di cristalli misti con elbrusite  :

 

Le indagini sui granati contenenti uranio sintetico hanno mostrato che l'incorporazione dell'uranio nella kerimasite avviene fino alla composizione dell'elbrusite come U6+. A contenuti di uranio superiori a 0,5 apfu (atom per formula unit - atomo per unità di formula), l'uranio è incorporato come analogo U5+ dell'usturite secondo la reazione di scambio:[10]

 

Abito cristallino

modifica

La kerimasite cristallizza nel sistema cubico nel gruppo spaziale Ia3d (gruppo nº 230) con 8 unità di formula per cella unitaria. L'elemento finale sintetico ha costante di reticolo a = 12.598 Å[3], il cristallo misto naturale della località tipo a = 12,549 Å.[4]

La struttura è quella del granato. Il calcio (Ca2+) occupa la posizione   dodecaedrica circondata da 8 ioni ossigeno, lo zirconio (Zr4+) occupa la posizione   ottaedrica circondata da 6 ioni ossigeno e la posizione   tetraedrica circondata da 4 ioni ossigeno è occupata da ferro (Fe3+) e silicio (Si4+).[4][8][12]

Origine e giacitura

modifica

A parte la sua località tipo, le carbonatiti del vulcano Kerimasi nel distretto di Ngorongoro, nella regione di Arusha in Tanzania, la kerimasite è stata descritta solo in altri sette siti.[14][15] Molti dei granati descritti come kimzeyite prima del 2010 sono anche kerimasite, comprese le occorrenze nelle carbonatiti, nelle magmatiti basiche e ultrabasiche e negli skarn.[15][16] La kerimasite si forma a bassa pressione e ad alte temperature, principalmente in magmatiti e carbonatiti ultrabasiche. I granati ricchi di kerimasite sono stati trovati anche negli skarn metamorfici di contatto.[2][15]

Carbonatiti

modifica

La località tipo di Kerimasite è una carbonatite del vulcano Kerimasi nel distretto di Ngorongoro, nella regione di Arusha in Tanzania. I minerali di accompagnamento sono la magnesioferrite e la baddeleyite.[4]

Nella polinocarbonatite vicino a Terni, in Umbria (Italia), la kerimasite, allora ancora chiamata kimzeyite, si presenta sotto forma di cristalli tondeggianti di 10-25 μm in calcite a grana fine insieme a flogopite, perovskite, monticellite e ossidi di Fe-Ti.[17]

Rocce ignee basiche

modifica

Le aree ricche di carbonato dei lamprofiri delle Marathon Dikes vicino a McKellar Harbour (Ontario, Canada) trasportano melaniti ricche di kerimasite insieme a olivina, flogopite, andradite, calcite, perovskite, apatite e spinello, che sono stati poi indicati come kimzeyite. Con poche eccezioni, le analisi pubblicate rientrano nell'intervallo di composizione della kerimasite.[18]

Nello skarn di calcio-magnesio al contatto di una granodiorite con le Dolomiti Triassiche nei monti di Štiavnica, in Slovacchia, la kerimasite si trova insieme all'andradite, alla monticellite, alla clintonite, alla magnetite, alla perovskite e alla brucite.[19]

In un'espulsione da un flusso piroclastico nei pressi di Anguillara Sabazia sul lago di Bracciano in Italia, la kerimasite, allora ancora indicata come kimzeyite, si presenta insieme a gehlenite, hercynite e pirite.[20]

Forma in cui si presenta in natura

modifica

I cristalli marrone scuro sono raramente più grandi di 0,1 mm e mostrano superfici di forma icositetraedrico trapezoidale.[4]

  1. ^ a b c d e (EN) Kerimasite, su mindat.org. URL consultato il 24 agosto 2024.
  2. ^ a b c d e (DE) Kerimasite, su mineralienatlas.de. URL consultato il 24 agosto 2024.
  3. ^ a b c d e f (EN) Junji Yamakawa, Chiyoko Henmi e Akira Kawahara, Syntheses and X-ray studies of Kimzeyite, Ca3Zr2(Al,Fe)2SiO12, in Mineralogical Journal, vol. 16, n. 7, 1993, pp. 371–377. URL consultato il 5 agosto 2017.
  4. ^ a b c d e f g h i j k l (EN) A.N. Zaitsev, C.T. Williams, S.N. Britvin, I.V. Kuznetsova, J.S. Pratt, S.V. Petrov e J. Keller, Kerimasite, Ca3Zr2(Fe3+2Si)O12, a new garnet from carbonatites of Kerimasi volcano and surrounding explosion craters, northern Tanzania (PDF), in Mineralogical Magazine, vol. 74, n. 5, 2010, pp. 803–820. URL consultato il 26 agosto 2017.
  5. ^ a b c (EN) Kerimasite (PDF), in Handbook of Mineralogy. URL consultato il 24 agosto 2024.
  6. ^ (EN) Laurence N. Warr, IMA–CNMNC approved mineral symbols (PDF), in Mineralogical Magazine, vol. 85, 2021, pp. 291–320, DOI:10.1180/mgm.2021.43. URL consultato il 25 agosto 2024.
  7. ^ a b (EN) Jun Ito e Clifford Frondel, Synthetic zirconium and titanium garnets (PDF), in American Mineralogist, vol. 52, 5–6, 1967, pp. 773-781. URL consultato l'8 luglio 2017.
  8. ^ a b (EN) Karl R. Whittle, Gregory R. Lumpkin, Frank J. Berry, Gordon Oates, Katherine L. Smith, Sergey Yudintsev e Nestor J. Zaluzec, The structure and ordering of zirconium and hafnium containing garnets studied by electron channelling, neutron diffraction and Mössbauer spectroscopy (PDF), in Journal of Solid State Chemistry, vol. 180, 2007, pp. 785–791. URL consultato il 5 agosto 2017.
  9. ^ (EN) F.A. Caporuscio, B.L. Scott, H. Xu e R.K. Feller, Garnet nuclear waste forms – Solubility at repository conditions (PDF), in Nuclear Engineering and Design, vol. 266, 2014, pp. 180–185. URL consultato l'8 luglio 2017.
  10. ^ a b (EN) Xiaofeng Guo, Alexandra Navrotsky, Ravi K. Kukkadapu, Mark H. Engelhard, Antonio Lanzirotti, Matthew Newville, Eugene S. Ilton, Stephen R. Sutton e Hongwu Xu, Structure and thermodynamics of uranium-containing iron garnets (PDF), in Geochimica et Cosmochimica Acta, vol. 189, 2016, pp. 269–281. URL consultato il 3 settembre 2017.
  11. ^ a b c (EN) Edward S. Grew, Andrew J. Locock, Stuart J. Mills, Irina O. Galuskina, Evgeny V. Galuskin e Ulf Hålenius, IMA Report - Nomenclature of the garnet supergroup (PDF), in American Mineralogist, vol. 98, 2013, pp. 785–811. URL consultato l'8 luglio 2017 (archiviato dall'url originale il 6 giugno 2020).
  12. ^ a b (EN) S.M. Antao e L.A. Cruickshank, Two cubic phases in kimzeyite garnet from the type locality Magnet Cove, Arkansas, in Acta Crystallographica Section B, vol. 72, 2016, pp. 846–854. URL consultato il 5 agosto 2017.
  13. ^ (EN) Irina O. Galuskina, Evgeny V. Galuskin, Thomas Armbruster, Biljana Lazic, Joachim Kusz, Piotr Dzierżanowski, Viktor M. Gazeev, Nikolai N. Pertsev, Krystian Prusik, Aleksandr E. Zadov, Antoni Winiarski, Roman Wrzalik e Anatoly G. Gurbanov, Elbrusite-(Zr) - A new uranium garnet from the the Upper Chegem caldera, Kabardino-Balkaria, Northern Caucasus, Russia (PDF), in American Mineralogist, vol. 95, n. 7, 2010, pp. 1172–1181. URL consultato il 29 luglio 2017 (archiviato dall'url originale il 31 luglio 2017).
  14. ^ (DE) Kerimasite (Occurrences), su mineralienatlas.de. URL consultato il 2 aprile 2024.
  15. ^ a b c (EN) Localities for Kerimasite, su mindat.org. URL consultato il 2 aprile 2024.
  16. ^ (DE) Kimzeyite, su mineralienatlas.de. URL consultato il 2 aprile 2024.
  17. ^ (EN) L. Lupini, C. T. Williams e A.R. Woolley, Zr-rich garnet and Zr- and Th-rich perovskite from the Polino carbonatite, Italy (PDF), in Mineralogical Magazine, vol. 56, 1992, pp. 581–586. URL consultato l'8 luglio 2017.
  18. ^ (EN) R. Grath Platt e Roger H. Mitchell, The Marathon Dikes. I: Zirconium-rich titanian garnets and manganoan magnesian ulviispinel-magnetite spinel (PDF), in American Mineralogist, vol. 64, 1979, pp. 546-550. URL consultato l'8 luglio 2017.
  19. ^ (EN) Pavel Uher, Peter Koděra e Daniel Ozdín, Kerimasite Ca 3Zr 2(Fe 3+ 2Si)O 12 - A rare garnet from Ca-Mg skarn-porphyry deposit Vysoká- Zlatno, Štiavnica stratovolcano, Central Slovakia, in Bulletin Mineralogicko-Petrologickeho Oddeleni Narodniho Muzea v Praze, vol. 20, n. 1, gennaio 2012, pp. 59–62. URL consultato il 3 marzo 2017.
  20. ^ (EN) Emanuela Schingaro, Fernando Scordari, Flavio Capitanio, Giancarlo Parodi, David C. Smith e Annibale Mottana, Crystal chemistry of kimzeyite from Anguillara, Mts. Sabatini, Italy, in European Journal of Mineralogy, vol. 13, n. 4, 2001, DOI:10.1127/0935-1221/2001/0013-0749.
  Portale Mineralogia: accedi alle voci di Wikipedia che trattano di mineralogia