

Supporting Observer Reads from

Routers
Author: Simbarashe Dzinamarira

Contributions from: Owen O’Malley

Background

Consistent reads from Standby

HDFS-12943 introduced Observer namenodes. These are Standby namenodes that

allow reads. This feature allows reads to be offloaded from the Active namenode to

Observer namenodes thereby improving both the throughput and latency of metadata

operations.

To make reads from Observers consistent, a client sends the Observer the last state ID

that the client received from the Active. The Observer then waits until its state reaches

this last seen state before responding to the client’s request. To support consistent reads

in the presence of third-party communicate, an msync call was added for clients. This is

used to explicitly query the last seen state ID from the Active namenode instead of

getting it implicitly in the response to another request.

The consistency model for Observer reads is formulated as the following:

If a client c1 sees or modifies an object state at modId1 at timet1, then in any

future time t2>t1, c1 will see the state of that object at modId2>=modId1

Router based federation

HDFS-10467 added an RPC routing layer that provides a federated view of multiple

HDFS namespaces. The routers maintain a mount-table and route clients calls to the

appropriate namenodes backing the mount points.

https://issues.apache.org/jira/browse/HDFS-12943
https://issues.apache.org/jira/browse/HDFS-10467

Interaction between router-based federation and observer

reads

Consistency for observer reads is enforced through the state ID that is propagate from an Active

namenode, through the client and then to the Observer namenode. Without routers, each client only

interacts with one active namenode so a single value is sufficient to capture the state ID.

When Routers are involved, a single client can interact with multiple namenode that are federated

behind the router therefore single value in the RPCHeader is not sufficient to capture the last seen

states of these namenodes.

Restating the consistency model for Observer reads:

If a client c1 sees or modifies an object state at modId1 at timet1, then in any future time

t2>t1, c1 will see the state of that object at modId2>=modId1

To maintain this consistency model, there are two main approaches

1) Before a router sends each read to the Observer, it fetches the last seen state ID from

the corresponding active namenode.

2) Propagate the last seen state ID for all namespaces to the client in rpc responses, and

receive it from the client in requests.

Approach Pros Cons
(1) MSYNC on every

reads
RPC header size unchanged Extra network roundtrip for

every read
(2) Propagate map of

stated to client
Number of network hops
unchanged (expect for
msync)

Larger RPC header

Design decision A

We choose approach (2), propagating all namespace state IDS to the client.

The cost of the larger RPC header is less than that incurred from an extra network

round-trip, so

Design decision B

Clients cannot opt-out of observer reads through the routers.

Routers are meant to provide a unified view of a federated namespace. Clients should

not know whether namenodes in a particular namespace have an HA setup with

Observer namenodes. We therefore choose to let only the routers enable or disable

observer reads.

Allowing clients to opt-out is a small change that can be added later as a performance

optimization (we have an implementation with this feature). However, we exclude this

optimization from the core design discussion.

Summary of proposed changes

1. Include the Observer state in the list of namenode states the Routers track.

2. Extend NamenodeResolver with the ability to prioritize observers so that reads can be

first attempted on observers.

3. Add a nameservice to stateID mapping, called nameserviceStateIds, to the

RPCHeader. Note, this can be just an obscure byte array since the client doesn’t need to

parse it.

4. Add a composite alignment context, called the FederatedNamespaceIds, to the router.

This contains a map from nameservices to NamespaceId objects specific to each

nameservice.

5. Communication between routers and clients

a. A router uses the FederatedNamespaceIds object to update the

nameserviceStateIds map in the RPCResponseHeader sent to clients.

b. A router updates the FederatedNamespaceIds object with information in the

nameserviceStateIds map in the RPCRequestHeader.

6. Communication between routers and namenodes.

a. When communicating with a Namenode, a router uses the a ClientGSIContext

linked to a NamespaceId contained within the composite

FederatedNamespaceIds.

i. StateID updates received in RPCResponseHeaders from Namenodes are

implicitly integrated into the FederatedNamespaceIds when applied to

the nameservice specific ClientGSIContext.

ii. Updates to the FederatedNamespaceIds will also be implicitly included

in the RPCRequestHeaders sent to NameNodes.

7. When a client does an msync call to a router, the router fans out this call to all

nameservices in order to fully update the FederatedNamespaceIds.

8. For old clients which do not have the nameserviceStateIds map, the router always

does an msync before each read call so that it obtains the latestSeenStateID for that

nameservice

FederationNamespaceIds

The FederatedNamespaceIds onbject (highlighted in yellow below) stores the last seen stateIDs

seen by a router. These stateIDs are received either from clients requests or namenodes

responses to the router. Similarly, the map is used to set the RPC head when the router sends

RPC requests to namenodes, or sends RPC responses to clients.

● For Router to Client communication, the FederatedNamespaceIds object is used directly

by the RouterStateIDContext.

● For Router to Namenode communication, the FederationNamespaceIds object is used

indirectly because the ClientGSIContexts in the routers reference elements of the

FederationNamespaceIds’ map.

Dotted lines represent object references

Reads your own writes (pdf)

https://issues.apache.org/jira/secure/attachment/13062829/rbf_observer_reads%20-%20read_own_writes.pdf

Third party communication (pdf)

https://issues.apache.org/jira/secure/attachment/13062830/rbf_observer_reads%20-%20third_party_reads.pdf

Implementation breakdown

1. Updates to Hadoop-common: https://github.com/apache/hadoop/pull/4584

a. Modifies RPCHeader proto

2. IPC changes: https://github.com/apache/hadoop/pull/4311

a. Creates classes to propagate FederatedState between clients and routers

3. Directing router reads to observers: https://github.com/apache/hadoop/pull/4127

a. Select observed as target for read operations.

b. For old clients without federated state, performs msync for every call.

c. Implements router msync that fans across all namespaces.

https://github.com/apache/hadoop/pull/4311
https://github.com/apache/hadoop/pull/4127

	Implementation breakdown

