Today, molecular biology databases are the cornerstone of knowledge sharing for life and health s... more Today, molecular biology databases are the cornerstone of knowledge sharing for life and health sciences. The curation and maintenance of these resources are labour intensive. Although text mining is gaining impetus among curators, its integration in curation workflow has not yet been widely adopted. The Swiss Institute of Bioinformatics Text Mining and CALIPHO groups joined forces to design a new curation support system named nextA5. In this report, we explore the integration of novel triage services to support the curation of two types of biological data: protein-protein interactions (PPIs) and posttranslational modifications (PTMs). The recognition of PPIs and PTMs poses a special challenge, as it not only requires the identification of biological entities (proteins or residues), but also that of particular relationships (e.g. binding or position). These relationships cannot be described with onto-terminological descriptors such as the Gene Ontology for molecular functions, which makes the triage task more challenging. Prioritizing papers for these tasks thus requires the development of different approaches. In this report, we propose a new method to prioritize articles containing information specific to PPIs and PTMs. The new resources (RESTful APIs, semantically annotated MEDLINE library) enrich the neXtA5 platform. We tuned the article prioritization model on a set of 100 proteins previously annotated by the CALIPHO group. The effectiveness of the triage service was tested with a dataset of 200 annotated proteins. We defined two sets of descriptors to support automatic triage: the first set to enrich for papers with PPI data, and the second for PTMs. All occurrences of
Biological processes are accomplished by the coordinated action of gene products. Gene products o... more Biological processes are accomplished by the coordinated action of gene products. Gene products often participate in multiple processes, and can therefore be annotated to multiple Gene Ontology (GO) terms. Nevertheless, processes that are functionally, temporally, and/or spatially distant may have few gene products in common, and co-annotation to unrelated processes likely reflects errors in literature curation, ontology structure, or automated annotation pipelines. We have developed an annotation quality control workflow that uses rules based on mutually exclusive processes to detect annotation errors, based on and validated by case studies including the three we present here: fission yeast protein-coding gene annotations over time; annotations for cohesin complex subunits in human and model species; and annotations using a selected set of GO biological process terms in human and five model species. For each case study, we reviewed available GO annotations, identified pairs of biological processes which are unlikely to be correctly co-annotated to the same gene products (e.g., amino acid metabolism and cytokinesis), and traced erroneous annotations to their sources. To date we have generated 107 quality control rules, and corrected 289 manual annotations in eukaryotes and over 2.5 million automatically propagated annotations across all taxa.
The Gene Ontology (GO) (http://www.geneontology .org) is a community bioinformatics resource that... more The Gene Ontology (GO) (http://www.geneontology .org) is a community bioinformatics resource that represents gene product function through the use of structured, controlled vocabularies. The number of GO annotations of gene products has increased due to curation efforts among GO Consortium (GOC) groups, including focused literature-based annotation and ortholog-based functional inference. The GO ontologies continue to expand and improve as a result of targeted ontology development, including the introduction of computable logical definitions and development of new tools for the streamlined addition of terms to the ontology. The GOC continues to support its user community through the use of e-mail lists, social media and web-based resources.
Background: The social amoebae (Dictyostelia) are a diverse group of Amoebozoa that achieve multi... more Background: The social amoebae (Dictyostelia) are a diverse group of Amoebozoa that achieve multicellularity by aggregation and undergo morphogenesis into fruiting bodies with terminally differentiated spores and stalk cells. There are four groups of dictyostelids, with the most derived being a group that contains the model species Dictyostelium discoideum.
The goal of the Gene Ontology (GO) project is to provide a uniform way to describe the functions ... more The goal of the Gene Ontology (GO) project is to provide a uniform way to describe the functions of gene products from organisms across all kingdoms of life and thereby enable analysis of genomic data. Protein annotations are either based on experiments or predicted from protein sequences. Since most sequences have not been experimentally characterized, most available annotations need to be based on predictions. To make as accurate inferences as possible, the GO Consortium's Reference Genome Project is using an explicit evolutionary framework to infer annotations of proteins from a broad set of genomes from experimental annotations in a semi-automated manner. Most components in the pipeline, such as selection of sequences, building multiple sequence alignments and phylogenetic trees, retrieving experimental annotations and depositing inferred annotations, are fully automated. However, the most crucial step in our pipeline relies on software-assisted curation by an expert biologist. This curation tool, Phylogenetic Annotation and INference Tool (PAINT) helps curators to infer annotations among members of a protein family. PAINT allows curators to make precise assertions as to when functions were gained and lost during evolution and record the evidence (e.g. experimentally supported GO annotations and phylogenetic information including orthology) for those assertions. In this article, we describe how we use PAINT to infer protein function in a phylogenetic context with emphasis on its strengths, limitations and guidelines. We also discuss specific examples showing how PAINT annotations compare with those generated by other highly used homology-based methods.
Protein Analysis THrough Evolutionary Relationships (PANTHER) is a comprehensive software system ... more Protein Analysis THrough Evolutionary Relationships (PANTHER) is a comprehensive software system for inferring the functions of genes based on their evolutionary relationships. Phylogenetic trees of gene families form the basis for PANTHER and these trees are annotated with ontology terms describing the evolution of gene function from ancestral to modern day genes. One of the main applications of PANTHER is in accurate prediction of the functions of uncharacterized genes, based on their evolutionary relationships to genes with functions known from experiment. The PANTHER website, freely available at http://www.pantherdb.org, also includes software tools for analyzing genomic data relative to known and inferred gene functions. Since 2007, there have been several new developments to PANTHER: (i) improved phylogenetic trees, explicitly representing speciation and gene duplication events, (ii) identification of gene orthologs, including least diverged orthologs (best one-to-one pairs), (iii) coverage of more genomes (48 genomes, up to 87% of genes in each genome; see http://www.pantherdb.org/panther/summaryStats.jsp), (iv) improved support for alternative database identifiers for genes, proteins and microarray probes and (v) adoption of the SBGN standard for display of biological pathways. In addition, PANTHER trees are being annotated with gene function as part of the Gene Ontology Reference Genome project, resulting in an increasing number of curated functional annotations.
The Gene Ontology (GO) is a collaborative effort that provides structured vocabularies for annota... more The Gene Ontology (GO) is a collaborative effort that provides structured vocabularies for annotating the molecular function, biological role, and cellular location of gene products in a highly systematic way and in a species-neutral manner with the aim of unifying the representation of gene function across different organisms. Each contributing member of the GO Consortium independently associates GO terms to gene products from the organism(s) they are annotating. Here we introduce the Reference Genome project, which brings together those independent efforts into a unified framework based on the evolutionary relationships between genes in these different organisms. The Reference Genome project has two primary goals: to increase the depth and breadth of annotations for genes in each of the organisms in the project, and to create data sets and tools that enable other genome annotation efforts to infer GO annotations for homologous genes in their organisms. In addition, the project has several important incidental benefits, such as increasing annotation consistency across genome databases, and providing important improvements to the GO's logical structure and biological content.
The social amoebae are exceptional in their ability to alternate between unicellular and multicel... more The social amoebae are exceptional in their ability to alternate between unicellular and multicellular forms. Here we describe the genome of the best-studied member of this group, Dictyostelium discoideum. The gene-dense chromosomes of this organism encode approximately 12,500 predicted proteins, a high proportion of which have long, repetitive amino acid tracts. There are many genes for polyketide synthases and ABC transporters, suggesting an extensive secondary metabolism for producing and exporting small molecules. The genome is rich in complex repeats, one class of which is clustered and may serve as centromeres. Partial copies of the extrachromosomal ribosomal DNA (rDNA) element are found at the ends of each chromosome, suggesting a novel telomere structure and the use of a common mechanism to maintain both the rDNA and chromosomal termini. A proteome-based phylogeny shows that the amoebozoa diverged from the animal-fungal lineage after the plant-animal split, but Dictyostelium seems to have retained more of the diversity of the ancestral genome than have plants, animals or fungi.
dictyBase (http://www.dictybase.org), the model organism database for Dictyostelium, aims to prov... more dictyBase (http://www.dictybase.org), the model organism database for Dictyostelium, aims to provide the broad biomedical research community with well integrated, high quality data and tools for Dictyostelium discoideum and related species. dictyBase houses the complete genome sequence, ESTs, and the entire body of literature relevant to Dictyostelium. This information is curated to provide accurate gene models and functional annotations, with the goal of fully annotating the genome to provide a ‘reference genome’ in the Amoebozoa clade. We highlight several new features in the present update: (i) new annotations; (ii) improved interface with web 2.0 functionality; (iii) the initial steps towards a genome portal for the Amoebozoa; (iv) ortholog display; and (v) the complete integration of the Dicty Stock Center with dictyBase.
This report summarizes the proceedings of the second workshop of the ‘Minimum Information for Bio... more This report summarizes the proceedings of the second workshop of the ‘Minimum Information for Biological and Biomedical Investigations’ (MIBBI) consortium held on Dec 1-2, 2010 in Rüdesheim, Germany through the sponsorship of the Beilstein-Institute. MIBBI is an umbrella organization uniting communities developing Minimum Information (MI) checklists to standardize the description of data sets, the workflows by which they were generated and the scientific context for the work. This workshop brought together representatives of more than twenty communities to present the status of their MI checklists and plans for future development. Shared challenges and solutions were identified and the role of MIBBI in MI checklist development was discussed. The meeting featured some thirty presentations, wide-ranging discussions and breakout groups. The top outcomes of the two-day workshop as defined by the participants were: 1) the chance to share best practices and to identify areas of synergy; 2) defining a series of tasks for updating the MIBBI Portal; 3) reemphasizing the need to maintain independent MI checklists for various communities while leveraging common terms and workflow elements contained in multiple checklists; and 4) revision of the concept of the MIBBI Foundry to focus on the creation of a core set of MIBBI modules intended for reuse by individual MI checklist projects while maintaining the integrity of each MI project. Further information about MIBBI and its range of activities can be found at http://mibbi.org/.
Background: The BioCreative challenge evaluation is a community-wide effort for evaluating text m... more Background: The BioCreative challenge evaluation is a community-wide effort for evaluating text mining and information extraction systems applied to the biological domain. The biocurator community, as an active user of biomedical literature, provides a diverse and engaged end user group for text mining tools. Earlier BioCreative challenges involved many text mining teams in developing basic capabilities relevant to biological curation, but they did not address the issues of system usage, insertion into the workflow and adoption by curators. Thus in BioCreative III (BC-III), the InterActive Task (IAT) was introduced to address the utility and usability of text mining tools for real-life biocuration tasks. To support the aims of the IAT in BC-III, involvement of both developers and end users was solicited, and the development of a user interface to address the tasks interactively was requested. Results: A User Advisory Group (UAG) actively participated in the IAT design and assessment. The task focused on gene normalization (identifying gene mentions in the article and linking these genes to standard database identifiers), gene ranking based on the overall importance of each gene mentioned in the article, and geneoriented document retrieval (identifying full text papers relevant to a selected gene). Six systems participated and all processed and displayed the same set of articles. The articles were selected based on content known to be problematic for curation, such as ambiguity of gene names, coverage of multiple genes and species, or introduction of a new gene name. Members of the UAG curated three articles for training and assessment purposes, and each member was assigned a system to review. A questionnaire related to the interface usability and task performance (as measured by precision and recall) was answered after systems were used to curate articles. Although the limited number of articles analyzed and users involved in the IAT experiment precluded rigorous quantitative analysis of the results, a qualitative analysis provided valuable insight into some of the problems encountered by users when using the systems. The overall assessment indicates that the system usability features appealed to most users, but the system performance was suboptimal (mainly due to low accuracy in gene normalization). Some of the issues included failure of species identification and gene name ambiguity in the gene normalization task leading to an extensive list of gene identifiers to review, which, in some cases, did not contain the relevant genes. The document retrieval suffered from the same shortfalls. The UAG favored achieving high performance (measured by precision and recall), but strongly recommended the addition of features that facilitate the identification of correct gene and its identifier, such as contextual information to assist in disambiguation. Discussion: The IAT was an informative exercise that advanced the dialog between curators and developers and increased the appreciation of challenges faced by each group. A major conclusion was that the intended users
INTRODUCTIONDictyostelium discoideum is a unicellular eukaryote often referred to as a &a... more INTRODUCTIONDictyostelium discoideum is a unicellular eukaryote often referred to as a "social ameba" because it can form a multicellular structure when nutrient conditions are limiting. D. discoideum and related organisms, known as the Dictyostelia, have been studied for almost 150 years. The cellular and molecular aspects of their multicellular lifestyle have been studied in detail, and general principles for cell-to-cell communication, intracellular signaling, and cytoskeletal organization during cell motility have been derived from this work and have been found to be conserved across all eukaryotes. The bacteriovore nature of the unicellular stage provides an excellent model in which to study phagocytosis and the mechanisms of bacterial virulence. D. discoideum has also been used successfully to explore the molecular basis of various human diseases, as well as the mechanisms of drug action and the pathways that lead to resistance to certain therapeutic agents. The availability of a complete genome sequence has further widened the scope of studies using D. discoideum. A large potential for secondary metabolism has become apparent, which opens the door to discovering new compounds with potential medical applications. Numerous putative orthologs of genes responsible for diseases in humans, but whose molecular functions are still uncharacterized, are present in the D. discoideum genome. Finally, the availability of community resources, including the genome database dictyBase and the Dicty Stock Center, makes D. discoideum an easily accessible and powerful model organism to study.
Here we present a protocol for the extraction of RNA from Dictyostelium discoideum. Dictyostelium... more Here we present a protocol for the extraction of RNA from Dictyostelium discoideum. Dictyostelium is a social amoeba that undergoes a basic developmental program, and therefore analysis of RNA levels over a time course is a commonly used technique. This procedure is similar to other guanidine thiocyanate-based methods; however, it has been adjusted because of the large quantities of carbohydrate and nucleases found in Dictyostelium cells. After cell lysis and phenol:chloroform extraction, the resulting high-quality RNA isolated with the described protocol allows the molecular genetic analysis of wild-type and genetically modified cells. The purified RNA can be used for analyses such as northern blotting, RT-PCR and microarrays. This procedure requires approximately 2 h to complete.
Dictyostelium discoideum is a unicellular eukaryote often referred to as a social ameba because i... more Dictyostelium discoideum is a unicellular eukaryote often referred to as a social ameba because it can form a multicellular structure when nutrient conditions are limiting. D. discoideum and related organisms, known as the Dictyostelia, have been studied for almost 150 years. The multicellular part of their life cycle has interested developmental biologists ever since these organisms were first described. The cellular and molecular aspects of their multicellular lifestyle have been studied in detail, and general principles for cell-to-cell communication, intracellular signaling, and cytoskeleton organization during cell motility have been derived from this work and have been found to be conserved across all eukaryotes. The bacteriovore lifestyle of the unicellular stage provides an excellent model in which to study phagocytosis and the mechanisms of bacterial virulence. D. discoideum has been used successfully to explore the molecular basis of various human diseases, as well as the mechanisms of action of some drugs and the pathways that lead to resistance to certain therapeutic agents. The presence of a complete genome sequence is further widening the scope of studies using D. discoideum. A large potential for secondary metabolism has become apparent, which opens the door to the discovery of new compounds with potential medical applications. Numerous putative orthologs of genes responsible for diseases in humans, but whose molecular functions are still uncharacterized, are present in the D. discoideum genome. Finally, the availability of community resources, including the genome database dictyBase and the Dicty Stock Center, make D. discoideum an easily accessible and powerful model organism to study.
Today, molecular biology databases are the cornerstone of knowledge sharing for life and health s... more Today, molecular biology databases are the cornerstone of knowledge sharing for life and health sciences. The curation and maintenance of these resources are labour intensive. Although text mining is gaining impetus among curators, its integration in curation workflow has not yet been widely adopted. The Swiss Institute of Bioinformatics Text Mining and CALIPHO groups joined forces to design a new curation support system named nextA5. In this report, we explore the integration of novel triage services to support the curation of two types of biological data: protein-protein interactions (PPIs) and posttranslational modifications (PTMs). The recognition of PPIs and PTMs poses a special challenge, as it not only requires the identification of biological entities (proteins or residues), but also that of particular relationships (e.g. binding or position). These relationships cannot be described with onto-terminological descriptors such as the Gene Ontology for molecular functions, which makes the triage task more challenging. Prioritizing papers for these tasks thus requires the development of different approaches. In this report, we propose a new method to prioritize articles containing information specific to PPIs and PTMs. The new resources (RESTful APIs, semantically annotated MEDLINE library) enrich the neXtA5 platform. We tuned the article prioritization model on a set of 100 proteins previously annotated by the CALIPHO group. The effectiveness of the triage service was tested with a dataset of 200 annotated proteins. We defined two sets of descriptors to support automatic triage: the first set to enrich for papers with PPI data, and the second for PTMs. All occurrences of
Biological processes are accomplished by the coordinated action of gene products. Gene products o... more Biological processes are accomplished by the coordinated action of gene products. Gene products often participate in multiple processes, and can therefore be annotated to multiple Gene Ontology (GO) terms. Nevertheless, processes that are functionally, temporally, and/or spatially distant may have few gene products in common, and co-annotation to unrelated processes likely reflects errors in literature curation, ontology structure, or automated annotation pipelines. We have developed an annotation quality control workflow that uses rules based on mutually exclusive processes to detect annotation errors, based on and validated by case studies including the three we present here: fission yeast protein-coding gene annotations over time; annotations for cohesin complex subunits in human and model species; and annotations using a selected set of GO biological process terms in human and five model species. For each case study, we reviewed available GO annotations, identified pairs of biological processes which are unlikely to be correctly co-annotated to the same gene products (e.g., amino acid metabolism and cytokinesis), and traced erroneous annotations to their sources. To date we have generated 107 quality control rules, and corrected 289 manual annotations in eukaryotes and over 2.5 million automatically propagated annotations across all taxa.
The Gene Ontology (GO) (http://www.geneontology .org) is a community bioinformatics resource that... more The Gene Ontology (GO) (http://www.geneontology .org) is a community bioinformatics resource that represents gene product function through the use of structured, controlled vocabularies. The number of GO annotations of gene products has increased due to curation efforts among GO Consortium (GOC) groups, including focused literature-based annotation and ortholog-based functional inference. The GO ontologies continue to expand and improve as a result of targeted ontology development, including the introduction of computable logical definitions and development of new tools for the streamlined addition of terms to the ontology. The GOC continues to support its user community through the use of e-mail lists, social media and web-based resources.
Background: The social amoebae (Dictyostelia) are a diverse group of Amoebozoa that achieve multi... more Background: The social amoebae (Dictyostelia) are a diverse group of Amoebozoa that achieve multicellularity by aggregation and undergo morphogenesis into fruiting bodies with terminally differentiated spores and stalk cells. There are four groups of dictyostelids, with the most derived being a group that contains the model species Dictyostelium discoideum.
The goal of the Gene Ontology (GO) project is to provide a uniform way to describe the functions ... more The goal of the Gene Ontology (GO) project is to provide a uniform way to describe the functions of gene products from organisms across all kingdoms of life and thereby enable analysis of genomic data. Protein annotations are either based on experiments or predicted from protein sequences. Since most sequences have not been experimentally characterized, most available annotations need to be based on predictions. To make as accurate inferences as possible, the GO Consortium's Reference Genome Project is using an explicit evolutionary framework to infer annotations of proteins from a broad set of genomes from experimental annotations in a semi-automated manner. Most components in the pipeline, such as selection of sequences, building multiple sequence alignments and phylogenetic trees, retrieving experimental annotations and depositing inferred annotations, are fully automated. However, the most crucial step in our pipeline relies on software-assisted curation by an expert biologist. This curation tool, Phylogenetic Annotation and INference Tool (PAINT) helps curators to infer annotations among members of a protein family. PAINT allows curators to make precise assertions as to when functions were gained and lost during evolution and record the evidence (e.g. experimentally supported GO annotations and phylogenetic information including orthology) for those assertions. In this article, we describe how we use PAINT to infer protein function in a phylogenetic context with emphasis on its strengths, limitations and guidelines. We also discuss specific examples showing how PAINT annotations compare with those generated by other highly used homology-based methods.
Protein Analysis THrough Evolutionary Relationships (PANTHER) is a comprehensive software system ... more Protein Analysis THrough Evolutionary Relationships (PANTHER) is a comprehensive software system for inferring the functions of genes based on their evolutionary relationships. Phylogenetic trees of gene families form the basis for PANTHER and these trees are annotated with ontology terms describing the evolution of gene function from ancestral to modern day genes. One of the main applications of PANTHER is in accurate prediction of the functions of uncharacterized genes, based on their evolutionary relationships to genes with functions known from experiment. The PANTHER website, freely available at http://www.pantherdb.org, also includes software tools for analyzing genomic data relative to known and inferred gene functions. Since 2007, there have been several new developments to PANTHER: (i) improved phylogenetic trees, explicitly representing speciation and gene duplication events, (ii) identification of gene orthologs, including least diverged orthologs (best one-to-one pairs), (iii) coverage of more genomes (48 genomes, up to 87% of genes in each genome; see http://www.pantherdb.org/panther/summaryStats.jsp), (iv) improved support for alternative database identifiers for genes, proteins and microarray probes and (v) adoption of the SBGN standard for display of biological pathways. In addition, PANTHER trees are being annotated with gene function as part of the Gene Ontology Reference Genome project, resulting in an increasing number of curated functional annotations.
The Gene Ontology (GO) is a collaborative effort that provides structured vocabularies for annota... more The Gene Ontology (GO) is a collaborative effort that provides structured vocabularies for annotating the molecular function, biological role, and cellular location of gene products in a highly systematic way and in a species-neutral manner with the aim of unifying the representation of gene function across different organisms. Each contributing member of the GO Consortium independently associates GO terms to gene products from the organism(s) they are annotating. Here we introduce the Reference Genome project, which brings together those independent efforts into a unified framework based on the evolutionary relationships between genes in these different organisms. The Reference Genome project has two primary goals: to increase the depth and breadth of annotations for genes in each of the organisms in the project, and to create data sets and tools that enable other genome annotation efforts to infer GO annotations for homologous genes in their organisms. In addition, the project has several important incidental benefits, such as increasing annotation consistency across genome databases, and providing important improvements to the GO's logical structure and biological content.
The social amoebae are exceptional in their ability to alternate between unicellular and multicel... more The social amoebae are exceptional in their ability to alternate between unicellular and multicellular forms. Here we describe the genome of the best-studied member of this group, Dictyostelium discoideum. The gene-dense chromosomes of this organism encode approximately 12,500 predicted proteins, a high proportion of which have long, repetitive amino acid tracts. There are many genes for polyketide synthases and ABC transporters, suggesting an extensive secondary metabolism for producing and exporting small molecules. The genome is rich in complex repeats, one class of which is clustered and may serve as centromeres. Partial copies of the extrachromosomal ribosomal DNA (rDNA) element are found at the ends of each chromosome, suggesting a novel telomere structure and the use of a common mechanism to maintain both the rDNA and chromosomal termini. A proteome-based phylogeny shows that the amoebozoa diverged from the animal-fungal lineage after the plant-animal split, but Dictyostelium seems to have retained more of the diversity of the ancestral genome than have plants, animals or fungi.
dictyBase (http://www.dictybase.org), the model organism database for Dictyostelium, aims to prov... more dictyBase (http://www.dictybase.org), the model organism database for Dictyostelium, aims to provide the broad biomedical research community with well integrated, high quality data and tools for Dictyostelium discoideum and related species. dictyBase houses the complete genome sequence, ESTs, and the entire body of literature relevant to Dictyostelium. This information is curated to provide accurate gene models and functional annotations, with the goal of fully annotating the genome to provide a ‘reference genome’ in the Amoebozoa clade. We highlight several new features in the present update: (i) new annotations; (ii) improved interface with web 2.0 functionality; (iii) the initial steps towards a genome portal for the Amoebozoa; (iv) ortholog display; and (v) the complete integration of the Dicty Stock Center with dictyBase.
This report summarizes the proceedings of the second workshop of the ‘Minimum Information for Bio... more This report summarizes the proceedings of the second workshop of the ‘Minimum Information for Biological and Biomedical Investigations’ (MIBBI) consortium held on Dec 1-2, 2010 in Rüdesheim, Germany through the sponsorship of the Beilstein-Institute. MIBBI is an umbrella organization uniting communities developing Minimum Information (MI) checklists to standardize the description of data sets, the workflows by which they were generated and the scientific context for the work. This workshop brought together representatives of more than twenty communities to present the status of their MI checklists and plans for future development. Shared challenges and solutions were identified and the role of MIBBI in MI checklist development was discussed. The meeting featured some thirty presentations, wide-ranging discussions and breakout groups. The top outcomes of the two-day workshop as defined by the participants were: 1) the chance to share best practices and to identify areas of synergy; 2) defining a series of tasks for updating the MIBBI Portal; 3) reemphasizing the need to maintain independent MI checklists for various communities while leveraging common terms and workflow elements contained in multiple checklists; and 4) revision of the concept of the MIBBI Foundry to focus on the creation of a core set of MIBBI modules intended for reuse by individual MI checklist projects while maintaining the integrity of each MI project. Further information about MIBBI and its range of activities can be found at http://mibbi.org/.
Background: The BioCreative challenge evaluation is a community-wide effort for evaluating text m... more Background: The BioCreative challenge evaluation is a community-wide effort for evaluating text mining and information extraction systems applied to the biological domain. The biocurator community, as an active user of biomedical literature, provides a diverse and engaged end user group for text mining tools. Earlier BioCreative challenges involved many text mining teams in developing basic capabilities relevant to biological curation, but they did not address the issues of system usage, insertion into the workflow and adoption by curators. Thus in BioCreative III (BC-III), the InterActive Task (IAT) was introduced to address the utility and usability of text mining tools for real-life biocuration tasks. To support the aims of the IAT in BC-III, involvement of both developers and end users was solicited, and the development of a user interface to address the tasks interactively was requested. Results: A User Advisory Group (UAG) actively participated in the IAT design and assessment. The task focused on gene normalization (identifying gene mentions in the article and linking these genes to standard database identifiers), gene ranking based on the overall importance of each gene mentioned in the article, and geneoriented document retrieval (identifying full text papers relevant to a selected gene). Six systems participated and all processed and displayed the same set of articles. The articles were selected based on content known to be problematic for curation, such as ambiguity of gene names, coverage of multiple genes and species, or introduction of a new gene name. Members of the UAG curated three articles for training and assessment purposes, and each member was assigned a system to review. A questionnaire related to the interface usability and task performance (as measured by precision and recall) was answered after systems were used to curate articles. Although the limited number of articles analyzed and users involved in the IAT experiment precluded rigorous quantitative analysis of the results, a qualitative analysis provided valuable insight into some of the problems encountered by users when using the systems. The overall assessment indicates that the system usability features appealed to most users, but the system performance was suboptimal (mainly due to low accuracy in gene normalization). Some of the issues included failure of species identification and gene name ambiguity in the gene normalization task leading to an extensive list of gene identifiers to review, which, in some cases, did not contain the relevant genes. The document retrieval suffered from the same shortfalls. The UAG favored achieving high performance (measured by precision and recall), but strongly recommended the addition of features that facilitate the identification of correct gene and its identifier, such as contextual information to assist in disambiguation. Discussion: The IAT was an informative exercise that advanced the dialog between curators and developers and increased the appreciation of challenges faced by each group. A major conclusion was that the intended users
INTRODUCTIONDictyostelium discoideum is a unicellular eukaryote often referred to as a &a... more INTRODUCTIONDictyostelium discoideum is a unicellular eukaryote often referred to as a "social ameba" because it can form a multicellular structure when nutrient conditions are limiting. D. discoideum and related organisms, known as the Dictyostelia, have been studied for almost 150 years. The cellular and molecular aspects of their multicellular lifestyle have been studied in detail, and general principles for cell-to-cell communication, intracellular signaling, and cytoskeletal organization during cell motility have been derived from this work and have been found to be conserved across all eukaryotes. The bacteriovore nature of the unicellular stage provides an excellent model in which to study phagocytosis and the mechanisms of bacterial virulence. D. discoideum has also been used successfully to explore the molecular basis of various human diseases, as well as the mechanisms of drug action and the pathways that lead to resistance to certain therapeutic agents. The availability of a complete genome sequence has further widened the scope of studies using D. discoideum. A large potential for secondary metabolism has become apparent, which opens the door to discovering new compounds with potential medical applications. Numerous putative orthologs of genes responsible for diseases in humans, but whose molecular functions are still uncharacterized, are present in the D. discoideum genome. Finally, the availability of community resources, including the genome database dictyBase and the Dicty Stock Center, makes D. discoideum an easily accessible and powerful model organism to study.
Here we present a protocol for the extraction of RNA from Dictyostelium discoideum. Dictyostelium... more Here we present a protocol for the extraction of RNA from Dictyostelium discoideum. Dictyostelium is a social amoeba that undergoes a basic developmental program, and therefore analysis of RNA levels over a time course is a commonly used technique. This procedure is similar to other guanidine thiocyanate-based methods; however, it has been adjusted because of the large quantities of carbohydrate and nucleases found in Dictyostelium cells. After cell lysis and phenol:chloroform extraction, the resulting high-quality RNA isolated with the described protocol allows the molecular genetic analysis of wild-type and genetically modified cells. The purified RNA can be used for analyses such as northern blotting, RT-PCR and microarrays. This procedure requires approximately 2 h to complete.
Dictyostelium discoideum is a unicellular eukaryote often referred to as a social ameba because i... more Dictyostelium discoideum is a unicellular eukaryote often referred to as a social ameba because it can form a multicellular structure when nutrient conditions are limiting. D. discoideum and related organisms, known as the Dictyostelia, have been studied for almost 150 years. The multicellular part of their life cycle has interested developmental biologists ever since these organisms were first described. The cellular and molecular aspects of their multicellular lifestyle have been studied in detail, and general principles for cell-to-cell communication, intracellular signaling, and cytoskeleton organization during cell motility have been derived from this work and have been found to be conserved across all eukaryotes. The bacteriovore lifestyle of the unicellular stage provides an excellent model in which to study phagocytosis and the mechanisms of bacterial virulence. D. discoideum has been used successfully to explore the molecular basis of various human diseases, as well as the mechanisms of action of some drugs and the pathways that lead to resistance to certain therapeutic agents. The presence of a complete genome sequence is further widening the scope of studies using D. discoideum. A large potential for secondary metabolism has become apparent, which opens the door to the discovery of new compounds with potential medical applications. Numerous putative orthologs of genes responsible for diseases in humans, but whose molecular functions are still uncharacterized, are present in the D. discoideum genome. Finally, the availability of community resources, including the genome database dictyBase and the Dicty Stock Center, make D. discoideum an easily accessible and powerful model organism to study.
Uploads
Papers by Pascale Gaudet