Numerical simulations of viscous transonic flow over a circular-arc airfoil and in a diffuser are... more Numerical simulations of viscous transonic flow over a circular-arc airfoil and in a diffuser are described. The simulations are made with a new computer program designed to serve as a tool in the development of improved turbulence models for complex flows. The program incorporates zero-, one-, and two-equation eddy viscosity models and includes a variety of subsonic and supersonic boundary conditions. The airfoil flow contains a shock-separated boundary-layer interaction that has resisted previous attempts at simulation. The diffuser flow also contains a shock-boundary-layer interaction, which has not been simulated previously. Calculations using standard turbulence models, developed originally for incompressible unseparated flows, are described. Results indicate that although there are interesting differences in predictions between the various models, none of them predict the flows accurately. Suggestions for improved turbulence models are discussed.
Jntroduct ion Results of an investigation of a three-dimensional interaction between intersecting... more Jntroduct ion Results of an investigation of a three-dimensional interaction between intersecting shockwaves and an hypersonic turbulent boundary
SUMMARY Turbulence modeling for high-speed compressible flows is described and discussed. Startin... more SUMMARY Turbulence modeling for high-speed compressible flows is described and discussed. Starting with the compressible Navier-Stokes equations, methods of statistical averaging are described by means of which the Reynolds-averaged Navier-Stokes equations are ...
This paper describes numerical simulations of self-excited oscillations in a two-dimensional tran... more This paper describes numerical simulations of self-excited oscillations in a two-dimensional transonic diffuser flow obtained by solving the Navier-Stokes equations with a two-equation turbulence model. Comparisons were made between the computational results and experimental data. For the mean flowfields, the agreement between computation and experiment is good for the wall pressures, shock location, and the separation and reattachment points. However, the thickness of the computed recirculation zone is about 50 percent of the measured thickness. For the fluctuating flowfields, a great deal of qualitative similarity exists between the computation and experiment; however, the predicted oscillation frequency is about 50 percent higher than the measured value. The formation of a succession of downstream-traveling counter-rotating vortices, as seen experimentally, is also vividly displayed in the numerical results.
... models. The main features include a line-by-line Gauss-Seidel algorithm using Roe's appr... more ... models. The main features include a line-by-line Gauss-Seidel algorithm using Roe's approximate Riemann solver, TVD numerical schemes, implicit boundary conditions and a decoupled turbulence-model solver. Based on ...
Aiaa 18th Fluid Dynamics and Plasmadynamics and Lasers Conference, Jul 1, 1985
A computer program for numerically simulating compressible, turbulent, two-phase flows is describ... more A computer program for numerically simulating compressible, turbulent, two-phase flows is described and applied. Special attention is given to flows in which dust is ingested into the turbulent boundary layer behind shock waves moving over the earth's surface. it is assumed that the two phases are interpenetrating continua which are coupled by drag forces and heat transfer. The particle phase
An investigation of the numerical simulation with two-equation turbulence models of a three-dimen... more An investigation of the numerical simulation with two-equation turbulence models of a three-dimensional hypersonic intersecting (SWTBL) shock-wave/turbulent boundary layer interaction flow is presented. The flows are solved with an efficient implicit upwind flux-difference split Reynolds-averaged Navier-Stokes code. Numerical results are compared with experimental data for a flow at Mach 8.28 and Reynolds number 5.3" 106 with crossing shock-waves and expansion fans generated by two lateral 15 fins located on top of a cold-wall plate. This experiment belongs to the hypersonic database for modeling validation. Simulations show the development of two primary counter-rotating cross-flow vortices and secondary turbulent structures under the main vortices and in each corner singularity inside the turbulent boundary layer. A significant loss of total pressure is produced by the complex
Numerical simulations of viscous transonic flow over a circular-arc airfoil and in a diffuser are... more Numerical simulations of viscous transonic flow over a circular-arc airfoil and in a diffuser are described. The simulations are made with a new computer program designed to serve as a tool in the development of improved turbulence models for complex flows. The program incorporates zero-, one-, and two-equation eddy viscosity models and includes a variety of subsonic and supersonic boundary conditions. The airfoil flow contains a shock-separated boundary-layer interaction that has resisted previous attempts at simulation. The diffuser flow also contains a shock-boundary-layer interaction, which has not been simulated previously. Calculations using standard turbulence models, developed originally for incompressible unseparated flows, are described. Results indicate that although there are interesting differences in predictions between the various models, none of them predict the flows accurately. Suggestions for improved turbulence models are discussed.
Jntroduct ion Results of an investigation of a three-dimensional interaction between intersecting... more Jntroduct ion Results of an investigation of a three-dimensional interaction between intersecting shockwaves and an hypersonic turbulent boundary
SUMMARY Turbulence modeling for high-speed compressible flows is described and discussed. Startin... more SUMMARY Turbulence modeling for high-speed compressible flows is described and discussed. Starting with the compressible Navier-Stokes equations, methods of statistical averaging are described by means of which the Reynolds-averaged Navier-Stokes equations are ...
This paper describes numerical simulations of self-excited oscillations in a two-dimensional tran... more This paper describes numerical simulations of self-excited oscillations in a two-dimensional transonic diffuser flow obtained by solving the Navier-Stokes equations with a two-equation turbulence model. Comparisons were made between the computational results and experimental data. For the mean flowfields, the agreement between computation and experiment is good for the wall pressures, shock location, and the separation and reattachment points. However, the thickness of the computed recirculation zone is about 50 percent of the measured thickness. For the fluctuating flowfields, a great deal of qualitative similarity exists between the computation and experiment; however, the predicted oscillation frequency is about 50 percent higher than the measured value. The formation of a succession of downstream-traveling counter-rotating vortices, as seen experimentally, is also vividly displayed in the numerical results.
... models. The main features include a line-by-line Gauss-Seidel algorithm using Roe's appr... more ... models. The main features include a line-by-line Gauss-Seidel algorithm using Roe's approximate Riemann solver, TVD numerical schemes, implicit boundary conditions and a decoupled turbulence-model solver. Based on ...
Aiaa 18th Fluid Dynamics and Plasmadynamics and Lasers Conference, Jul 1, 1985
A computer program for numerically simulating compressible, turbulent, two-phase flows is describ... more A computer program for numerically simulating compressible, turbulent, two-phase flows is described and applied. Special attention is given to flows in which dust is ingested into the turbulent boundary layer behind shock waves moving over the earth's surface. it is assumed that the two phases are interpenetrating continua which are coupled by drag forces and heat transfer. The particle phase
An investigation of the numerical simulation with two-equation turbulence models of a three-dimen... more An investigation of the numerical simulation with two-equation turbulence models of a three-dimensional hypersonic intersecting (SWTBL) shock-wave/turbulent boundary layer interaction flow is presented. The flows are solved with an efficient implicit upwind flux-difference split Reynolds-averaged Navier-Stokes code. Numerical results are compared with experimental data for a flow at Mach 8.28 and Reynolds number 5.3" 106 with crossing shock-waves and expansion fans generated by two lateral 15 fins located on top of a cold-wall plate. This experiment belongs to the hypersonic database for modeling validation. Simulations show the development of two primary counter-rotating cross-flow vortices and secondary turbulent structures under the main vortices and in each corner singularity inside the turbulent boundary layer. A significant loss of total pressure is produced by the complex
Uploads
Papers by thomas coakley