Background: Abolition of cancer warrants effective treatment modalities directed towards specific... more Background: Abolition of cancer warrants effective treatment modalities directed towards specific pathways dysregulated in tumor proliferation and survival. The antiapoptotic Bcl-2 proteins are significantly altered in several tumor types which position them as striking targets for therapeutic intervention. Here we designed, computationally evaluated, synthesized, and biologically tested structurally optimized thiazole-based small molecules as anticancer agents. Methods: The virtually designed 200 molecules were subjected to rigorous docking and in silico ADME-Toxicity studies. Out of this, 23 skeletally diverse thiazole-based molecules which passed pan assay interference compounds (PAINS) filter and were synthetically feasible were synthesized in 3 steps using cheap and readily available reagents. The molecules were in vitro evaluated against Bcl-2-Jurkat, A-431 cancerous cell lines and ARPE-19 cell
Background: Abolition of cancer warrants effective treatment modalities directed towards specific... more Background: Abolition of cancer warrants effective treatment modalities directed towards specific pathways dysregulated in tumor proliferation and survival. The antiapoptotic Bcl-2 proteins are significantly altered in several tumor types which position them as striking targets for therapeutic intervention. Here we designed, computationally evaluated, synthesized, and biologically tested structurally optimized thiazole-based small molecules as anticancer agents. Methods: The virtually designed 200 molecules were subjected to rigorous docking and in silico ADME-Toxicity studies. Out of this, 23 skeletally diverse thiazole-based molecules which passed pan assay interference compounds (PAINS) filter and were synthetically feasible were synthesized in 3 steps using cheap and readily available reagents. The molecules were in vitro evaluated against Bcl-2-Jurkat, A-431 cancerous cell lines and ARPE-19 cell
Uploads
Papers by raj patle