IEEE transactions on pattern analysis and machine intelligence, Jun 1, 2016
Hypergraph matching has recently become a popular approach for solving correspondence problems in... more Hypergraph matching has recently become a popular approach for solving correspondence problems in computer vision as it allows the use of higher-order geometric information. Hypergraph matching can be formulated as a third-order optimization problem subject to assignment constraints which turns out to be NP-hard. In recent work, we have proposed an algorithm for hypergraph matching which first lifts the third-order problem to a fourth-order problem and then solves the fourth-order problem via optimization of the corresponding multilinear form. This leads to a tensor block coordinate ascent scheme which has the guarantee of providing monotonic ascent in the original matching score function and leads to state-of-the-art performance both in terms of achieved matching score and accuracy. In this paper we show that the lifting step to a fourth-order problem can be avoided yielding a third-order scheme with the same guarantees and performance but being two times faster. Moreover, we intro...
IEEE transactions on pattern analysis and machine intelligence, Jun 1, 2016
Hypergraph matching has recently become a popular approach for solving correspondence problems in... more Hypergraph matching has recently become a popular approach for solving correspondence problems in computer vision as it allows the use of higher-order geometric information. Hypergraph matching can be formulated as a third-order optimization problem subject to assignment constraints which turns out to be NP-hard. In recent work, we have proposed an algorithm for hypergraph matching which first lifts the third-order problem to a fourth-order problem and then solves the fourth-order problem via optimization of the corresponding multilinear form. This leads to a tensor block coordinate ascent scheme which has the guarantee of providing monotonic ascent in the original matching score function and leads to state-of-the-art performance both in terms of achieved matching score and accuracy. In this paper we show that the lifting step to a fourth-order problem can be avoided yielding a third-order scheme with the same guarantees and performance but being two times faster. Moreover, we intro...
Uploads
Papers by quynh nguyen