Papers by mathilde clement
Background: During the last decades, shotgun metagenomics and metabarcoding have highlighted the ... more Background: During the last decades, shotgun metagenomics and metabarcoding have highlighted the diversity of microorganisms from environmental or host-associated samples. Most assembled metagenome public repositories use annotation pipelines tailored for prokaryotes regardless of the taxonomic origin of contigs and metagenome-assembled genomes (MAGs). Consequently, eukaryotic contigs and MAGs, with intrinsically different gene features, are not optimally annotated, resulting in an incorrect representation of the eukaryotic component of biodiversity, despite their biological relevance. Results: Using an automated analysis pipeline, we have filtered 7.9 billion of contigs from 6,873 soil metagenomes in the IMG/M database of the Joint Genome Institute to identify eukaryotic contigs. We have re-annotated genes using eukaryote-tailored methods, yielding 8 million eukaryotic proteins. Of these, 5.6 million could be traced back to non-chimeric higher confidence eukaryotic contigs. Our pip...
Pea aphid Acyrtosiphon pisum, a sap-feeding insect, has established a mutualistic relationship wi... more Pea aphid Acyrtosiphon pisum, a sap-feeding insect, has established a mutualistic relationship with an endosymbiotic bacteria (Buchnera aphidicola) that constitutes an evolutionary successful symbiosis to synthetize complex chemical compounds from a nutrient deprived diet. In this study, led by the presence of DNMT1 and a putative DNMT3 methylase in the aphid genome, we investigated the distribution of the methyl groups on 5’cytosine in CpG motifs on the whole genomes of host and endosymbiont, and looked into their correlation with gene expression. The DNA methylation turned to be present at low level in aphid (around 3% of total genomic cytosine) compared to mammals and plants, but increased to ∼9% in genes. Interestingly, the reduced genome of the endosymbiont Buchnera also shows global low level of methyl cytosine despite the fact that its genome does not shelter any DNA methylase. This finding argues for the import of DNA methylase from the host to the endosymbiont. The observed...
The New phytologist, Jan 4, 2015
Plants display numerous strategies to cope with phosphate (Pi)-deficiency. Despite multiple genet... more Plants display numerous strategies to cope with phosphate (Pi)-deficiency. Despite multiple genetic studies, the molecular mechanisms of low-Pi-signalling remain unknown. To validate the interest of chemical genetics to investigate this pathway we discovered and analysed the effects of PHOSTIN (PSN), a drug mimicking Pi-starvation in Arabidopsis. We assessed the effects of PSN and structural analogues on the induction of Pi-deficiency responses in mutants and wild-type and followed their accumulation in plants organs by high pressure liquid chromotography (HPLC) or mass-spectrophotometry. We show that PSN is cleaved in the growth medium, releasing its active motif (PSN11), which accumulates in plants roots. Despite the overaccumulation of Pi in the roots of treated plants, PSN11 elicits both local and systemic Pi-starvation effects. Nevertheless, albeit that the transcriptional activation of low-Pi genes by PSN11 is lost in the phr1;phl1 double mutant, neither PHO1 nor PHO2 are requ...
PLANT PHYSIOLOGY, 2014
Inorganic phosphate (Pi) is present in most soils at suboptimal concentrations, strongly limiting... more Inorganic phosphate (Pi) is present in most soils at suboptimal concentrations, strongly limiting plant development. Plants have the ability to sense and adapt to the surrounding ionic environment, and several genes involved in the response to Pi starvation have been identified. However, a global understanding of the regulatory mechanisms involved in this process is still elusive. Here, we have initiated a chemical genetics approach and isolated compounds that inhibit the response to Pi starvation in Arabidopsis (Arabidopsis thaliana). Molecules were screened for their ability to inhibit the expression of a Pi starvation marker gene (the high-affinity Pi transporter PHT1;4). A drug family named Phosphatin (PTN; Pi starvation inhibitor), whose members act as partial suppressors of Pi starvation responses, was thus identified. PTN addition also reduced various traits of Pi starvation, such as phospholipid/glycolipid conversion, and the accumulation of starch and anthocyanins. A transcriptomic assay revealed a broad impact of PTN on the expression of many genes regulated by low Pi availability. Despite the reduced amount of Pi transporters and resulting reduced Pi uptake capacity, no reduction of Pi content was observed. In addition, PTN improved plant growth; this reveals that the developmental restrictions induced by Pi starvation are not a consequence of metabolic limitation but a result of genetic regulation. This highlights the existence of signal transduction pathway(s) that limit plant development under the Pi starvation condition.
PLoS ONE, 2014
Heritability of acquired phenotypic traits is an adaptive evolutionary process that appears more ... more Heritability of acquired phenotypic traits is an adaptive evolutionary process that appears more complex than the basic allele selection guided by environmental pressure. In insects, the trans-generational transmission of epigenetic marks in clonal and/or sexual species is poorly documented. Aphids were used as a model to explore this feature because their asexual phase generates a stochastic and/or environment-oriented repertoire of variants. The a priori unchanged genome in clonal individuals prompts us to hypothesize whether covalent methyl DNA marks might be associated to the phenotypic variability and fitness selection. The full differential transcriptome between two environmentally selected clonal variants that originated from the same founder mother was mapped on the entire genomic scaffolds, in parallel with the methyl cytosine distribution. Data suggest that the assortments of heavily methylated DNA sites are distinct in these two clonal phenotypes. This might constitute an epigenetic mechanism that confers the robust adaptation of insect species to various environments involving clonal reproduction.
Trends in Plant Science, 2011
THE PLANT CELL ONLINE, 2009
Reorganization of the actin and microtubule networks is known to occur in targeted vascular paren... more Reorganization of the actin and microtubule networks is known to occur in targeted vascular parenchymal root cells upon infection with the nematode Meloidogyne incognita. Here, we show that actin-depolymerizing factor (ADF) is upregulated in the giant feeding cells of Arabidopsis thaliana that develop upon nematode infection and that knockdown of a specific ADF isotype inhibits nematode proliferation. Analysis of the levels of transcript and the localization of seven ADF genes shows that five are upregulated in galls that result from the infection and that ADF2 expression is particularly increased between 14 and 21 d after nematode inoculation. Further analysis of ADF2 function in inducible RNA interference lines designed to knock down ADF2 expression reveals that this protein is required for normal cell growth and plant development. The net effect of decreased levels of ADF2 is F-actin stabilization in cells, resulting from decreased F-actin turnover. In nematode-infected plants wi...
Plant, Cell & Environment, 2014
PRAF proteins are present in all plants, but their functions remain unclear. We investigated the ... more PRAF proteins are present in all plants, but their functions remain unclear. We investigated the role of one member of the PRAF family, MtZR1, on the development of roots and nitrogen-fixing nodules in Medicago truncatula. We found that MtZR1 was expressed in all M. truncatula organs. Spatiotemporal analysis showed that MtZR1 expression in M. truncatula roots was mostly limited to the root meristem and the vascular bundles of mature nodules. MtZR1 expression in root nodules was down-regulated in response to various abiotic stresses known to affect nitrogen fixation efficiency. The down-regulation of MtZR1 expression by RNA interference in transgenic roots decreased root growth and impaired nodule development and function. MtZR1 overexpression resulted in longer roots and significant changes to nodule development. Our data thus indicate that MtZR1 is involved in the development of roots and nodules. To our knowledge, this work provides the first in vivo experimental evidence of a biological role for a typical PRAF protein in plants.
Plant, Cell & Environment, 2009
It is not known how the uptake and retention of the key osmolyte K + in cells are mediated in gro... more It is not known how the uptake and retention of the key osmolyte K + in cells are mediated in growing leaf tissue. In the present study on the growing leaf 3 of barley, we have cloned the full-length coding sequence of three genes which encode putative K + channels (HvAKT1, HvAKT2, HvKCO1/HvTPK1), and of one gene which encodes a putative K + transporter (HvHAK4). The functionality of the gene products of HvAKT1 and HvAKT2 was tested through expression in Xenopus laevis oocytes. Both are inward-rectifying K + channels which are inhibited by Cs +. Function of HvAKT1 in oocytes requires co-expression of a calcineurin-interacting protein kinase (AtCIPK23) and a calcineurin B-like protein (AtCBL9) from Arabidopsis, showing cross-species complementation of function. In planta, HvAKT1 is expressed primarily in roots, but is also expressed in leaf tissue. HvAKT2 is expressed particularly in leaf tissue, and HvHAK4 is expressed particularly in growing leaf tissue. Within leaves, HvAKT1 and HvAKT2 are expressed predominantly in mesophyll. Expression of genes changes little in response to low external K + or salinity, despite major changes in K + concentrations and osmolality of cells. Possible contributions of HvAKT1, HvAKT2, HvKCO1 and HvHAK4 to regulation of K + relations of growing barley leaf cells are discussed.
Plant, Cell and Environment, 2006
Symbiotic N(2) fixation of legume crops is highly sensitive to drought, which results in a dramat... more Symbiotic N(2) fixation of legume crops is highly sensitive to drought, which results in a dramatic drop of N accumulation and yield. The symbiosis between soybean (Glycine max) and Bradyrhizobium japonicum, because of its extreme sensitivity to drought, was chosen as a model to analyse the response to drought stress at a molecular level. The mRNA differential display technique was performed to isolate cDNA markers differentially expressed in well-watered [100% of N(2) fixation capacity (NFC)] and drought-stressed nodules (40% NFC). One gene noted, G93, appeared strongly down-regulated by drought and fully recovered after rehydration. In situ hybridization showed that G93 transcripts were localized in N(2)-fixing cells of mature nodules, indicating that G93 could be considered as a late nodulin. However, G93 expression was not directly correlated to N(2) fixation but mainly responded to osmotic stress. Other stresses that lead to decrease of N(2) fixation did not affect G93 expression. Sequence analyses showed that G93 presented a strong homology with two soybean expressed sequence tags (ESTs) and with the ZR1 protein of Medicago sativa. Putative roles of this nodulin in adaptation of soybean nodule to osmotic stress are proposed.
PLANT PHYSIOLOGY, 2011
Cytosolic/nuclear molecular chaperones of the heat shock protein families HSP90 and HSC70 are con... more Cytosolic/nuclear molecular chaperones of the heat shock protein families HSP90 and HSC70 are conserved and essential proteins in eukaryotes. These proteins have essentially been implicated in the innate immunity and abiotic stress tolerance in higher plants. Here, we demonstrate that both chaperones are recruited in Arabidopsis (Arabidopsis thaliana) for stomatal closure induced by several environmental signals. Plants overexpressing HSC70-1 or with reduced HSP90.2 activity are compromised in the dark-, CO2-, flagellin 22 peptide-, and abscisic acid (ABA)-induced stomatal closure. HSC70-1 and HSP90 proteins are needed to establish basal expression levels of several ABA-responsive genes, suggesting that these chaperones might also be involved in ABA signaling events. Plants overexpressing HSC70-1 or with reduced HSP90.2 activity are hypersensitive to ABA in seed germination assays, suggesting that several chaperone complexes with distinct substrates might tune tissue-specific respon...
PLANT PHYSIOLOGY, 2009
Under nitrogen-limiting conditions, legumes interact with symbiotic rhizobia to produce nitrogen-... more Under nitrogen-limiting conditions, legumes interact with symbiotic rhizobia to produce nitrogen-fixing root nodules. We have previously shown that glutathione and homoglutathione [(h)GSH] deficiencies impaired Medicago truncatula symbiosis efficiency, showing the importance of the low M r thiols during the nodulation process in the model legume M. truncatula. In this study, the plant transcriptomic response to Sinorhizobium meliloti infection under (h)GSH depletion was investigated using cDNA-amplified fragment length polymorphism analysis. Among 6,149 expression tags monitored, 181 genes displayed significant differential expression between inoculated control and inoculated (h)GSH depleted roots. Quantitative reverse transcription polymerase chain reaction analysis confirmed the changes in mRNA levels. This transcriptomic analysis shows a down-regulation of genes involved in meristem formation and a modulation of the expression of stress-related genes in (h)GSH-depleted plants. P...
Journal of Experimental Botany, 2009
Molecular chaperones of the heat shock cognate 70 kDa (HSC70) family are highly conserved in all ... more Molecular chaperones of the heat shock cognate 70 kDa (HSC70) family are highly conserved in all living organisms and assist nascent protein folding in normal physiological conditions as well as in biotic and abiotic stress conditions. In the absence of specific inhibitors or viable knockout mutants, cytosolic/nuclear HSC70-1 overexpression (OE) and mutants in the HSC70 co-chaperone SGT1 (suppressor of G 2 /M allele of skp1) were used as genetic tools to identify HSC70/SGT1 functions in Arabidopsis development and abiotic stress responses. HSC70-1 OE caused a reduction in root and shoot meristem activities, thus explaining the dwarfism of those plants. In addition, HSC70-1 OE did not impair auxin-dependent phenotypes, suggesting that SGT1 functions previously identified in auxin signalling are HSC70 independent. While responses to abiotic stimuli such as UV-C exposure, phosphate starvation, or seedling de-etiolation were not perturbed by HSC70-1 OE, it specifically conferred gray hypersensitivity and tolerance to salt, cadmium (Cd), and arsenic (As). Cd and As perception was not perturbed, but plants overexpressing HSC70-1 accumulated less Cd, thus providing a possible molecular explanation for their tolerance phenotype. In summary, genetic evidence is provided for HSC70-1 involvement in a limited set of physiological processes, illustrating the essential and yet specific functions of this chaperone in development and abiotic stress responses in Arabidopsis.
Gene, 2008
Legumes/rhizobium biological N 2 fixation (BNF) is dramatically affected under abiotic stress suc... more Legumes/rhizobium biological N 2 fixation (BNF) is dramatically affected under abiotic stress such as drought, salt, cold and heavy metal stresses. Nodule response to drought stress at the molecular level was analysed using soybean (Glycine max) and Bradyrhizobium japonicum as a model, since this symbiotic partnership is extremely sensitive to this stress. To gain insight into molecular mechanisms involved in drought-induced BNF inhibition, we have constructed a SSH (Suppression Subtractive Hybridisation) cDNA library from nodular tissue of plants irrigated at field capacity or plants water deprived for 5 days. Sequence analysis of the first set of 128 non redundant ESTs using protein databases and the BLASTx program indicated that 70% of ESTs could be classified into putative known functions. Using reverse northern hybridization, 56 ESTs were validated as up-regulated genes in response to drought. Interestingly, only a few of them had been previously described as involved in plant response to drought, therefore most of the ESTs could be considered as new markers of drought stress. Here we discuss the potential role of some of these up-regulated genes in response to drought. Our analysis focused on two genes, encoding respectively a ferritin and a metallothionein, which are known to be involved in homeostasis and detoxification of metals and in response to oxidative stress. Their spatiotemporal expression patterns showed a high accumulation of transcripts restricted to infected cells of nodules in response to drought.
Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2009
Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2008
PLANT PHYSIOLOGY, 2014
In plants, membrane-bound receptor kinases are essential for developmental processes, immune resp... more In plants, membrane-bound receptor kinases are essential for developmental processes, immune responses to pathogens and the establishment of symbiosis. We previously identified the Arabidopsis (Arabidopsis thaliana) receptor kinase IMPAIRED OOMYCETE SUSCEPTIBILITY1 (IOS1) as required for successful infection with the downy mildew pathogen Hyaloperonospora arabidopsidis. We report here that IOS1 is also required for full susceptibility of Arabidopsis to unrelated (hemi)biotrophic filamentous oomycete and fungal pathogens. Impaired susceptibility in the absence of IOS1 appeared to be independent of plant defense mechanism. Instead, we found that ios1-1 plants were hypersensitive to the plant hormone abscisic acid (ABA), displaying enhanced ABA-mediated inhibition of seed germination, root elongation, and stomatal opening. These findings suggest that IOS1 negatively regulates ABA signaling in Arabidopsis. The expression of ABA-sensitive COLD REGULATED and RESISTANCE TO DESICCATION gene...
Uploads
Papers by mathilde clement