Papers by marcello lissia

Proceedings of International Workshop on Astroparticle and High Energy Physics — PoS(AHEP2003), 2003
In preparation to the experimental results which will be available in the future, we consider geo... more In preparation to the experimental results which will be available in the future, we consider geo-neutrino production in greater detail than in [F. Mantovani et al., arXiv:hep-ph/0309013], putting the basis for a more refined model. We study geo-neutrino production for different models of matter circulation and composition in the mantle. By using global mass balance for the Bulk Silicate Earth, the predicted flux contribution from distant sources in the crust and in the mantle is fixed within ±15% (full range). A detailed geological and geochemical investigation of the region near the detector has to be performed, for reducing the flux uncertainty from fluctuations of the local abundances to the level of the global geochemical error. A five-kton detector operating over four years at a site relatively far from nuclear power plants can measure the geo-neutrino signal with 5% accuracy (1σ). It will provide a crucial test of the Bulk Silicate Earth and a direct estimate of the radiogenic contribution to terrestrial heat.
The solar core, because of its density and temperature, is not a weakly-interacting or a high-tem... more The solar core, because of its density and temperature, is not a weakly-interacting or a high-temperature plasma. Collective effects have time scales comparable to the average time between collisions, and the microfield distribution influences the particle dynamics. In this conditions ion and electron diffusion is a non-Markovian process, memory effects are present and the equilibrium statistical distribution function differs from the Maxwellian one. We show that, even if the deviations from the standard velocity distribution that are compatible with our present knowledge of the solar interior are small, they are sufficient to sensibly modify the sub-barrier nuclear reaction rates. The consequent changes of the neutrino fluxes are comparable to the flux deficits that constitute the solar neutrino problem.

Proceedings of International Workshop on Astroparticle and High Energy Physics — PoS(AHEP2003), 2003
In preparation to the experimental results which will be available in the future, we consider geo... more In preparation to the experimental results which will be available in the future, we consider geo-neutrino production in greater detail than in [F. Mantovani et al., arXiv:hep-ph/0309013], putting the basis for a more refined model. We study geo-neutrino production for different models of matter circulation and composition in the mantle. By using global mass balance for the Bulk Silicate Earth, the predicted flux contribution from distant sources in the crust and in the mantle is fixed within ±15% (full range). A detailed geological and geochemical investigation of the region near the detector has to be performed, for reducing the flux uncertainty from fluctuations of the local abundances to the level of the global geochemical error. A five-kton detector operating over four years at a site relatively far from nuclear power plants can measure the geo-neutrino signal with 5% accuracy (1σ). It will provide a crucial test of the Bulk Silicate Earth and a direct estimate of the radiogenic contribution to terrestrial heat.

Proceedings of International Workshop on Astroparticle and High Energy Physics — PoS(AHEP2003), 2003
In preparation to the experimental results which will be available in the future, we consider geo... more In preparation to the experimental results which will be available in the future, we consider geo-neutrino production in greater detail than in [F. Mantovani et al., arXiv:hep-ph/0309013], putting the basis for a more refined model. We study geo-neutrino production for different models of matter circulation and composition in the mantle. By using global mass balance for the Bulk Silicate Earth, the predicted flux contribution from distant sources in the crust and in the mantle is fixed within ±15% (full range). A detailed geological and geochemical investigation of the region near the detector has to be performed, for reducing the flux uncertainty from fluctuations of the local abundances to the level of the global geochemical error. A five-kton detector operating over four years at a site relatively far from nuclear power plants can measure the geo-neutrino signal with 5% accuracy (1σ). It will provide a crucial test of the Bulk Silicate Earth and a direct estimate of the radiogenic contribution to terrestrial heat.
Theoretical Nuclear Physics in Italy, 2001
Energy and momentum of the elementary excitations become independent variables in medium: energy ... more Energy and momentum of the elementary excitations become independent variables in medium: energy and momentum statistical distributions are not identical. The momentum distribution and not the energy distribution is relevant for barrier penetration. The deviations of the momentum distribution from the Maxwell-Boltzmann energy distribution can be expressed in terms of the imaginary part of the self-energy of the quasi-particle. It is possible to obtain an effective Tsallis' distribution for the kinetic energy. These effects are different from static or dynamical screening and can have important consequences for reaction rates in stars.
The solar core, because of its density and temperature, is not a weakly-interacting or a high-tem... more The solar core, because of its density and temperature, is not a weakly-interacting or a high-temperature plasma. Collective effects have time scales comparable to the average time between collisions, and the microfield distribution influences the particle dynamics. In this conditions ion and electron diffusion is a non-Markovian process, memory effects are present and the equilibrium statistical distribution function differs from the Maxwellian one. We show that, even if the deviations from the standard velocity distribution that are compatible with our present knowledge of the solar interior are small, they are sufficient to sensibly modify the sub-barrier nuclear reaction rates. The consequent changes of the neutrino fluxes are comparable to the flux deficits that constitute the solar neutrino problem.
The solar core, because of its density and temperature, is not a weakly-interacting or a high-tem... more The solar core, because of its density and temperature, is not a weakly-interacting or a high-temperature plasma. Collective effects have time scales comparable to the average time between collisions, and the microfield distribution influences the particle dynamics. In this conditions ion and electron diffusion is a non-Markovian process, memory effects are present and the equilibrium statistical distribution function differs from the Maxwellian one. We show that, even if the deviations from the standard velocity distribution that are compatible with our present knowledge of the solar interior are small, they are sufficient to sensibly modify the sub-barrier nuclear reaction rates. The consequent changes of the neutrino fluxes are comparable to the flux deficits that constitute the solar neutrino problem.

Physica A: Statistical Mechanics and its Applications, 1998
Density and temperature conditions in the solar core suggest that the microscopic diffusion of el... more Density and temperature conditions in the solar core suggest that the microscopic diffusion of electrons and ions could be nonstandard: Diffusion and friction coefficients are energy dependent, collisions are not two-body processes and retain memory beyond the single scattering event. A direct consequence of nonstandard diffusion is that the equilibrium energy distribution of particles departs from the Maxwellian one (tails goes to zero more slowly or faster than exponentially) modifying the reaction rates. This effect is qualitatively different from temperature and/or composition modification: Small changes in the number of particles in the distribution tails can strongly modify the rates without affecting bulk properties, such as the sound speed or hydrostatic equilibrium, which depend on the mean values from the distribution. This mechanism can considerably increase the range of predictions for the neutrino fluxes allowed by the current experimental values (cross sections and solar properties) and can be used to reduce the discrepancy between these predictions and the solar neutrino experiments.
Theoretical Nuclear Physics in Italy, 2001
Energy and momentum of the elementary excitations become independent variables in medium: energy ... more Energy and momentum of the elementary excitations become independent variables in medium: energy and momentum statistical distributions are not identical. The momentum distribution and not the energy distribution is relevant for barrier penetration. The deviations of the momentum distribution from the Maxwell-Boltzmann energy distribution can be expressed in terms of the imaginary part of the self-energy of the quasi-particle. It is possible to obtain an effective Tsallis' distribution for the kinetic energy. These effects are different from static or dynamical screening and can have important consequences for reaction rates in stars.
Theoretical Nuclear Physics in Italy, 2001
Energy and momentum of the elementary excitations become independent variables in medium: energy ... more Energy and momentum of the elementary excitations become independent variables in medium: energy and momentum statistical distributions are not identical. The momentum distribution and not the energy distribution is relevant for barrier penetration. The deviations of the momentum distribution from the Maxwell-Boltzmann energy distribution can be expressed in terms of the imaginary part of the self-energy of the quasi-particle. It is possible to obtain an effective Tsallis' distribution for the kinetic energy. These effects are different from static or dynamical screening and can have important consequences for reaction rates in stars.
Physica A: Statistical Mechanics and its Applications, 2002
We show that moderate deviations from the Maxwell-Boltzmann energy distribution can increase deut... more We show that moderate deviations from the Maxwell-Boltzmann energy distribution can increase deuterium reaction rates enough to contribute to the heating of Jupiter. These deviations are compatible with the violation of extensivity expected from temperature and density conditions inside Jupiter.

Physica A: Statistical Mechanics and its Applications, 1998
Density and temperature conditions in the solar core suggest that the microscopic diffusion of el... more Density and temperature conditions in the solar core suggest that the microscopic diffusion of electrons and ions could be nonstandard: Diffusion and friction coefficients are energy dependent, collisions are not two-body processes and retain memory beyond the single scattering event. A direct consequence of nonstandard diffusion is that the equilibrium energy distribution of particles departs from the Maxwellian one (tails goes to zero more slowly or faster than exponentially) modifying the reaction rates. This effect is qualitatively different from temperature and/or composition modification: Small changes in the number of particles in the distribution tails can strongly modify the rates without affecting bulk properties, such as the sound speed or hydrostatic equilibrium, which depend on the mean values from the distribution. This mechanism can considerably increase the range of predictions for the neutrino fluxes allowed by the current experimental values (cross sections and solar properties) and can be used to reduce the discrepancy between these predictions and the solar neutrino experiments.

Physica A: Statistical Mechanics and its Applications, 1998
Density and temperature conditions in the solar core suggest that the microscopic diffusion of el... more Density and temperature conditions in the solar core suggest that the microscopic diffusion of electrons and ions could be nonstandard: Diffusion and friction coefficients are energy dependent, collisions are not two-body processes and retain memory beyond the single scattering event. A direct consequence of nonstandard diffusion is that the equilibrium energy distribution of particles departs from the Maxwellian one (tails goes to zero more slowly or faster than exponentially) modifying the reaction rates. This effect is qualitatively different from temperature and/or composition modification: Small changes in the number of particles in the distribution tails can strongly modify the rates without affecting bulk properties, such as the sound speed or hydrostatic equilibrium, which depend on the mean values from the distribution. This mechanism can considerably increase the range of predictions for the neutrino fluxes allowed by the current experimental values (cross sections and solar properties) and can be used to reduce the discrepancy between these predictions and the solar neutrino experiments.

Open Physics, 2009
Non-resonant fusion cross-sections significantly higher than corresponding theoretical prediction... more Non-resonant fusion cross-sections significantly higher than corresponding theoretical predictions are observed in low-energy experiments with deuterated matrix target. Models based on thermal effects, electron screening, or quantum-effect dispersion relations have been proposed to explain these anomalous results: none of them appears to satisfactory reproduce the experiments. Velocity distributions are fundamental for the reaction rates and deviations from the Maxwellian limit could play a central role in explaining the enhancement. We examine two effects: an increase of the tail of the target Deuteron momentum distribution due to the Galitskii-Yakimets quantum uncertainty effect, which broadens the energy-momentum relation; and spatial fluctuations of the Debye-Hückel radius leading to an effective increase of electron screening. Either effect leads to larger reaction rates especially large at energies below a few keV, reducing the discrepancy between observations and theoretical ...
Physica A: Statistical Mechanics and its Applications, 2002
We show that moderate deviations from the Maxwell-Boltzmann energy distribution can increase deut... more We show that moderate deviations from the Maxwell-Boltzmann energy distribution can increase deuterium reaction rates enough to contribute to the heating of Jupiter. These deviations are compatible with the violation of extensivity expected from temperature and density conditions inside Jupiter.
Physica A: Statistical Mechanics and its Applications, 2002
We show that moderate deviations from the Maxwell-Boltzmann energy distribution can increase deut... more We show that moderate deviations from the Maxwell-Boltzmann energy distribution can increase deuterium reaction rates enough to contribute to the heating of Jupiter. These deviations are compatible with the violation of extensivity expected from temperature and density conditions inside Jupiter.
Physics Letters B, 1998
Nuclear reactions in stars occur between nuclei in the high-energy tail of the energy distributio... more Nuclear reactions in stars occur between nuclei in the high-energy tail of the energy distribution and are sensitive to possible deviations from the standard equilibrium thermal-energy distribution. We are able to derive strong constraints on such deviations by using the detailed helioseismic information of the solar structure. If a small deviation is parameterized with a factor exp{-δ(E/kT ) 2 }, we find that δ should lie between -0.005 and +0.002. However, even values of δ as small as 0.003 would still give important effects on the neutrino fluxes.

Open Physics, 2009
Non-resonant fusion cross-sections significantly higher than corresponding theoretical prediction... more Non-resonant fusion cross-sections significantly higher than corresponding theoretical predictions are observed in low-energy experiments with deuterated matrix target. Models based on thermal effects, electron screening, or quantum-effect dispersion relations have been proposed to explain these anomalous results: none of them appears to satisfactory reproduce the experiments. Velocity distributions are fundamental for the reaction rates and deviations from the Maxwellian limit could play a central role in explaining the enhancement. We examine two effects: an increase of the tail of the target Deuteron momentum distribution due to the Galitskii-Yakimets quantum uncertainty effect, which broadens the energy-momentum relation; and spatial fluctuations of the Debye-Hückel radius leading to an effective increase of electron screening. Either effect leads to larger reaction rates especially large at energies below a few keV, reducing the discrepancy between observations and theoretical ...

Open Physics, 2009
Non-resonant fusion cross-sections significantly higher than corresponding theoretical prediction... more Non-resonant fusion cross-sections significantly higher than corresponding theoretical predictions are observed in low-energy experiments with deuterated matrix target. Models based on thermal effects, electron screening, or quantum-effect dispersion relations have been proposed to explain these anomalous results: none of them appears to satisfactory reproduce the experiments. Velocity distributions are fundamental for the reaction rates and deviations from the Maxwellian limit could play a central role in explaining the enhancement. We examine two effects: an increase of the tail of the target Deuteron momentum distribution due to the Galitskii-Yakimets quantum uncertainty effect, which broadens the energy-momentum relation; and spatial fluctuations of the Debye-Hückel radius leading to an effective increase of electron screening. Either effect leads to larger reaction rates especially large at energies below a few keV, reducing the discrepancy between observations and theoretical ...
Nuclear Physics B - Proceedings Supplements, 1996
We extract information on the uxes of Be and CNO neutrinos directly from solar neutrino experimen... more We extract information on the uxes of Be and CNO neutrinos directly from solar neutrino experiments, with minimal assumptions about solar models. Next we compare these results with solar models, both standard and non standard ones. Finally we discuss the expectations for Borexino, both in the case of standard and non standard neutrinos.
Uploads
Papers by marcello lissia