This is a PDF file of an unedited manuscript that has been accepted for publication. As a service... more This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Cochlear ablation in neonatal rats disrupts inhibitory transmission in the medial nucleus of the trapezoid body.
In the present study, an unbiased stereological method was used to determine the number of all ne... more In the present study, an unbiased stereological method was used to determine the number of all neurons in Nissl stained sections of the inferior colliculus (IC), medial geniculate body (MGB), and auditory cortex (AC) in rats (strains Long Evans and Fischer 344) and their changes with aging. In addition, using the optical fractionator and western blot technique, we also evaluated the number of SMI-32-immunoreactive (-ir) neurons and levels of non-phosphorylated neurofilament proteins in the IC, MGB, AC, and visual cortex of young and old rats of the two strains. The SMI-32 positive neuronal population comprises about 10% of all neurons in the rat IC, MGB, and AC and represents a prevalent population of large neurons with highly myelinated and projecting processes. In both Long Evans and Fischer 344 rats, the total number of neurons in the IC was roughly similar to that in the AC. With aging, we found a rather mild and statistically non-significant decline in the total number of neuro...
We investigated the representation of four typical guinea pig vocalizations in the auditory corte... more We investigated the representation of four typical guinea pig vocalizations in the auditory cortex (AI) in anesthetized guinea pigs with the aim to compare cortical data to the data already published for identical calls in subcortical structures-the inferior colliculus (IC) and medial geniculate body (MGB). Like the subcortical neurons also cortical neurons typically responded to many calls with a time-locked response to one or more temporal elements of the calls. The neuronal response patterns in the AI correlated well with the sound temporal envelope of chirp (an isolated short phrase), but correlated less well in the case of chutter and whistle (longer calls) or purr (a call with a fast repetition rate of phrases). Neuronal rate vs. characteristic frequency profiles provided only a coarse representation of the calls' frequency spectra. A comparison between the activity in the AI and those of subcortical structures showed a different transformation of the neuronal response patterns from the IC to the AI for individual calls: i) while the temporal representation of chirp remained unchanged, the representations of whistle and chutter were transformed at the thalamic level and the response to purr at the cortical level; ii) for the wideband calls (whistle, chirp) the rate representation of the call spectra was preserved in the AI and MGB at the level present in the IC, while in the case of low-frequency calls (chutter, purr), the representation was less precise in the AI and MGB than in the IC; iii) the difference in the response strength to natural and time-reversed whistle was found to be smaller in the AI than in the IC or MGB.
Noise exposure during the critical period of postnatal development in rats results in anomalous p... more Noise exposure during the critical period of postnatal development in rats results in anomalous processing of acoustic stimuli in the adult auditory system. In the present study, the behavioral consequences of an acute acoustic trauma in the critical period are assessed in adult rats using the acoustic startle reflex (ASR) and prepulse inhibition (PPI) of ASR. Rat pups (strain Long-Evans) were exposed to broad-band noise of 125 dB SPL for 8 min on postnatal day 14; at the age of 3-5 months, ASR and PPI of ASR were examined and compared with those obtained in age-matched controls. In addition, hearing thresholds were measured in all animals by means of auditory brainstem responses. The results show that although the hearing thresholds in both groups of animals were not different, a reduced strength of the startle reflex was observed in exposed rats compared with controls. The efficacy of PPI in exposed and control rats was also markedly different. In contrast to control rats, in which an increase in prepulse intensity was accompanied by a consistent increase in the efficacy of PPI, the PPI function in the exposed animals was characterized by a steep increase in inhibitory efficacy at low prepulse intensities of 20-30 dB SPL. A further increase of prepulse intensity up to 60-70 dB SPL caused only a small and insignificant change of PPI. Our findings demonstrate that brief noise exposure in rat pups results in altered behavioral responses to sounds in adulthood, indicating anomalies in intensity coding and loudness perception.
The strength of the acoustic startle response (ASR) to short bursts of broadband noise or tone pi... more The strength of the acoustic startle response (ASR) to short bursts of broadband noise or tone pips (4, 8 and 16 kHz) and the prepulse inhibition (PPI) of the ASR elicited by prepulse tones (4, 8 and 16 kHz) were measured in parvalbumin-deficient (PV−/−) mice and in age-matched PV+/+ mice as controls. Hearing thresholds as determined from recordings of auditory brainstem responses were found to be similar in both genotypes. The ASRs to broadband noise and tones of low and middle frequencies were stronger than the ASRs in response to high-frequency tones in both groups. In PV−/− mice, we observed smaller ASR amplitudes in response to relatively weak startling stimuli (80-90 dB sound pressure level (SPL)
The behavioral consequences of age-related changes in the auditory system were studied in Fischer... more The behavioral consequences of age-related changes in the auditory system were studied in Fischer 344 (F344) rats as a model of fast aging and in Long Evans (LE) rats as a model of normal aging. Hearing thresholds, the strength of the acoustic startle responses (ASRs) to noise and tonal stimuli, and the efficiency of the prepulse inhibition (PPI) of ASR were assessed in young-adult, middle-aged, and aged rats of both strains. Compared with LE rats, F344 rats showed larger age-related hearing threshold shifts, and the amplitudes of their startle responses were mostly lower. Both rat strains demonstrated a significant decrease of startle reactivity during aging. For tonal stimuli, this decrease occurred at an earlier age in the F344 rats: middle-aged F344 animals expressed similar startle reactivity as aged F344 animals, whereas middle-aged LE animals had similar startle reactivity as young-adult LE animals. For noise stimuli, on the other hand, a similar progression of age-related ASR changes was found in both strains. No significant relationship between the hearing thresholds and the ASR amplitudes was found within any age group. Auditory PPI was less efficient in F344 rats than in LE rats. An age-related reduction of the PPI of ASR was observed in rats of both strains; however, a significant reduction of PPI occurred only in aged rats. The results indicate that the ASR may serve as an indicator of central presbycusis.
Age-related changes in the levels of major intracellular calcium buffers are known to occur in di... more Age-related changes in the levels of major intracellular calcium buffers are known to occur in different parts of the mammalian brain, including the central auditory pathway. In the present study, we evaluate with immunohistochemistry and the western blot technique the effect that aging has on the calbindin-and calretinin-expressing system of neurons in the higher structures of the central auditory pathway, in the inferior colliculus (IC), medial geniculate body (MGB) and auditory cortex (AC) of two rat strains, the slowly aging Long-Evans and the fast aging Fischer 344. Interestingly, the age-related changes demonstrated a similar character regardless of the rat strain. In the IC of young animals, the majority of calbindin and calretinin immuno-reactive (CB and CR-ir) cells were found in the dorsal and external cortices and only sparse positive cells were present in the central nucleus of the IC. With aging, the number of CB-ir and CR-ir neurons decreased significantly in both the dorsal and external cortices. Furthermore, these declines were accompanied by an age-related reduction in the mean volumes of CBand CR-ir neuronal somas. In the MGB of young rats, CB-ir neurons were present in abundant numbers in both the dorsal and ventral subdivisions, while CR-ir neurons were practically absent in this structure. With aging, the number and mean volume of CB-ir cells in the ventral subdivision of the MGB were significantly decreased. In comparison with the IC and MGB, age-related numerical and volumetric declines of both CB-ir and CR-ir neurons in the AC were less pronounced. Western blot protein analysis revealed a pronounced age-related decline in the levels of calbindin in both strains and in all examined brain regions. In contrast, the decline in calretinin levels with aging was less prominent, with a significant decline only in the IC of both strains. The observed age-related changes in the calbindin-and calretinin-expressing systems may contribute significantly to the deterioration of hearing function known as central presbycusis.
Changes in the levels of gamma-aminobutyric acid (GABA) are known to occur in different parts of ... more Changes in the levels of gamma-aminobutyric acid (GABA) are known to occur in different parts of the brain during aging. In our study we attempted to define the effect that aging has on glutamate decarboxylase (GAD), the key enzyme in the synthesis of GABA, in the central parts of the auditory system. Age-related changes in GAD65 and GAD67 levels were investigated using immunohistochemistry and western blotting in the inferior colliculus (IC), the auditory cortex (AC) and the visual cortex in Long-Evans rats. The results show that aging is associated with a decrease in the numbers of GAD65-and 67-immunoreactive neurons and the optical density of their somas in both the IC and AC. Western blot analysis revealed a pronounced age-related decline in the levels of GAD65 and 67 proteins in both the IC and AC. For comparison, in the visual cortex the decrease in both proteins was less pronounced than in the IC and AC. A similar pattern of age-related changes was found in Fischer 344 rats, a strain that manifests a rapid loss of hearing function with aging. The observed age-related decline in the levels of GAD65 and 67 may contribute significantly to the deterioration of hearing function that accompanies aging in mammals, including man.
This is a PDF file of an unedited manuscript that has been accepted for publication. As a service... more This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Cochlear ablation in neonatal rats disrupts inhibitory transmission in the medial nucleus of the trapezoid body.
In the present study, an unbiased stereological method was used to determine the number of all ne... more In the present study, an unbiased stereological method was used to determine the number of all neurons in Nissl stained sections of the inferior colliculus (IC), medial geniculate body (MGB), and auditory cortex (AC) in rats (strains Long Evans and Fischer 344) and their changes with aging. In addition, using the optical fractionator and western blot technique, we also evaluated the number of SMI-32-immunoreactive (-ir) neurons and levels of non-phosphorylated neurofilament proteins in the IC, MGB, AC, and visual cortex of young and old rats of the two strains. The SMI-32 positive neuronal population comprises about 10% of all neurons in the rat IC, MGB, and AC and represents a prevalent population of large neurons with highly myelinated and projecting processes. In both Long Evans and Fischer 344 rats, the total number of neurons in the IC was roughly similar to that in the AC. With aging, we found a rather mild and statistically non-significant decline in the total number of neuro...
We investigated the representation of four typical guinea pig vocalizations in the auditory corte... more We investigated the representation of four typical guinea pig vocalizations in the auditory cortex (AI) in anesthetized guinea pigs with the aim to compare cortical data to the data already published for identical calls in subcortical structures-the inferior colliculus (IC) and medial geniculate body (MGB). Like the subcortical neurons also cortical neurons typically responded to many calls with a time-locked response to one or more temporal elements of the calls. The neuronal response patterns in the AI correlated well with the sound temporal envelope of chirp (an isolated short phrase), but correlated less well in the case of chutter and whistle (longer calls) or purr (a call with a fast repetition rate of phrases). Neuronal rate vs. characteristic frequency profiles provided only a coarse representation of the calls' frequency spectra. A comparison between the activity in the AI and those of subcortical structures showed a different transformation of the neuronal response patterns from the IC to the AI for individual calls: i) while the temporal representation of chirp remained unchanged, the representations of whistle and chutter were transformed at the thalamic level and the response to purr at the cortical level; ii) for the wideband calls (whistle, chirp) the rate representation of the call spectra was preserved in the AI and MGB at the level present in the IC, while in the case of low-frequency calls (chutter, purr), the representation was less precise in the AI and MGB than in the IC; iii) the difference in the response strength to natural and time-reversed whistle was found to be smaller in the AI than in the IC or MGB.
Noise exposure during the critical period of postnatal development in rats results in anomalous p... more Noise exposure during the critical period of postnatal development in rats results in anomalous processing of acoustic stimuli in the adult auditory system. In the present study, the behavioral consequences of an acute acoustic trauma in the critical period are assessed in adult rats using the acoustic startle reflex (ASR) and prepulse inhibition (PPI) of ASR. Rat pups (strain Long-Evans) were exposed to broad-band noise of 125 dB SPL for 8 min on postnatal day 14; at the age of 3-5 months, ASR and PPI of ASR were examined and compared with those obtained in age-matched controls. In addition, hearing thresholds were measured in all animals by means of auditory brainstem responses. The results show that although the hearing thresholds in both groups of animals were not different, a reduced strength of the startle reflex was observed in exposed rats compared with controls. The efficacy of PPI in exposed and control rats was also markedly different. In contrast to control rats, in which an increase in prepulse intensity was accompanied by a consistent increase in the efficacy of PPI, the PPI function in the exposed animals was characterized by a steep increase in inhibitory efficacy at low prepulse intensities of 20-30 dB SPL. A further increase of prepulse intensity up to 60-70 dB SPL caused only a small and insignificant change of PPI. Our findings demonstrate that brief noise exposure in rat pups results in altered behavioral responses to sounds in adulthood, indicating anomalies in intensity coding and loudness perception.
The strength of the acoustic startle response (ASR) to short bursts of broadband noise or tone pi... more The strength of the acoustic startle response (ASR) to short bursts of broadband noise or tone pips (4, 8 and 16 kHz) and the prepulse inhibition (PPI) of the ASR elicited by prepulse tones (4, 8 and 16 kHz) were measured in parvalbumin-deficient (PV−/−) mice and in age-matched PV+/+ mice as controls. Hearing thresholds as determined from recordings of auditory brainstem responses were found to be similar in both genotypes. The ASRs to broadband noise and tones of low and middle frequencies were stronger than the ASRs in response to high-frequency tones in both groups. In PV−/− mice, we observed smaller ASR amplitudes in response to relatively weak startling stimuli (80-90 dB sound pressure level (SPL)
The behavioral consequences of age-related changes in the auditory system were studied in Fischer... more The behavioral consequences of age-related changes in the auditory system were studied in Fischer 344 (F344) rats as a model of fast aging and in Long Evans (LE) rats as a model of normal aging. Hearing thresholds, the strength of the acoustic startle responses (ASRs) to noise and tonal stimuli, and the efficiency of the prepulse inhibition (PPI) of ASR were assessed in young-adult, middle-aged, and aged rats of both strains. Compared with LE rats, F344 rats showed larger age-related hearing threshold shifts, and the amplitudes of their startle responses were mostly lower. Both rat strains demonstrated a significant decrease of startle reactivity during aging. For tonal stimuli, this decrease occurred at an earlier age in the F344 rats: middle-aged F344 animals expressed similar startle reactivity as aged F344 animals, whereas middle-aged LE animals had similar startle reactivity as young-adult LE animals. For noise stimuli, on the other hand, a similar progression of age-related ASR changes was found in both strains. No significant relationship between the hearing thresholds and the ASR amplitudes was found within any age group. Auditory PPI was less efficient in F344 rats than in LE rats. An age-related reduction of the PPI of ASR was observed in rats of both strains; however, a significant reduction of PPI occurred only in aged rats. The results indicate that the ASR may serve as an indicator of central presbycusis.
Age-related changes in the levels of major intracellular calcium buffers are known to occur in di... more Age-related changes in the levels of major intracellular calcium buffers are known to occur in different parts of the mammalian brain, including the central auditory pathway. In the present study, we evaluate with immunohistochemistry and the western blot technique the effect that aging has on the calbindin-and calretinin-expressing system of neurons in the higher structures of the central auditory pathway, in the inferior colliculus (IC), medial geniculate body (MGB) and auditory cortex (AC) of two rat strains, the slowly aging Long-Evans and the fast aging Fischer 344. Interestingly, the age-related changes demonstrated a similar character regardless of the rat strain. In the IC of young animals, the majority of calbindin and calretinin immuno-reactive (CB and CR-ir) cells were found in the dorsal and external cortices and only sparse positive cells were present in the central nucleus of the IC. With aging, the number of CB-ir and CR-ir neurons decreased significantly in both the dorsal and external cortices. Furthermore, these declines were accompanied by an age-related reduction in the mean volumes of CBand CR-ir neuronal somas. In the MGB of young rats, CB-ir neurons were present in abundant numbers in both the dorsal and ventral subdivisions, while CR-ir neurons were practically absent in this structure. With aging, the number and mean volume of CB-ir cells in the ventral subdivision of the MGB were significantly decreased. In comparison with the IC and MGB, age-related numerical and volumetric declines of both CB-ir and CR-ir neurons in the AC were less pronounced. Western blot protein analysis revealed a pronounced age-related decline in the levels of calbindin in both strains and in all examined brain regions. In contrast, the decline in calretinin levels with aging was less prominent, with a significant decline only in the IC of both strains. The observed age-related changes in the calbindin-and calretinin-expressing systems may contribute significantly to the deterioration of hearing function known as central presbycusis.
Changes in the levels of gamma-aminobutyric acid (GABA) are known to occur in different parts of ... more Changes in the levels of gamma-aminobutyric acid (GABA) are known to occur in different parts of the brain during aging. In our study we attempted to define the effect that aging has on glutamate decarboxylase (GAD), the key enzyme in the synthesis of GABA, in the central parts of the auditory system. Age-related changes in GAD65 and GAD67 levels were investigated using immunohistochemistry and western blotting in the inferior colliculus (IC), the auditory cortex (AC) and the visual cortex in Long-Evans rats. The results show that aging is associated with a decrease in the numbers of GAD65-and 67-immunoreactive neurons and the optical density of their somas in both the IC and AC. Western blot analysis revealed a pronounced age-related decline in the levels of GAD65 and 67 proteins in both the IC and AC. For comparison, in the visual cortex the decrease in both proteins was less pronounced than in the IC and AC. A similar pattern of age-related changes was found in Fischer 344 rats, a strain that manifests a rapid loss of hearing function with aging. The observed age-related decline in the levels of GAD65 and 67 may contribute significantly to the deterioration of hearing function that accompanies aging in mammals, including man.
Uploads
Papers by jana burianova