Journal of the Nuclear Fuel Cycle and Waste Technology, 2004
Important operation parameters and performance of a high temperature ceramic candle filter system... more Important operation parameters and performance of a high temperature ceramic candle filter system were evaluated through a series of demonstration tests at a pilot-scale vitrification plant. At the initial period of each test, due to the growth of dust cake on the surface of ceramic candles, the pressure drop across the filter media increased sharply. After that it became stable to a certain range and varied continuously proportion to the face velocity of off-gas. On the contrary, at the initial period of each test, the permeability of filter element decreased rapidly and then it became stable. Back flushing of the filter system was effective under the back flushing air pressure range of 3∼5 bar. Based on the dust concentrations measured by iso-kinetic dust sampling at the inlet and outlet point of HTF, the dust collection efficiency of HTF evaluated. The result met the designed performance value of 99.9%. During the demonstration tests including a hundred hour long test, no specific failure or problem affecting the performance of HTF system were observed.
유중 건조 공정의 기본 원리는 수분과 비열차이가 있는 오일을 가열할 때 온도 차이에 따라 형성되는 슬러지 내부의 급격한 압력 변화를 이용한다. 즉 슬러지 내부에 발생하는 급격... more 유중 건조 공정의 기본 원리는 수분과 비열차이가 있는 오일을 가열할 때 온도 차이에 따라 형성되는 슬러지 내부의 급격한 압력 변화를 이용한다. 즉 슬러지 내부에 발생하는 급격한 압력 상승이 이루어질 때 슬러지 공극을 통하여 수분이 빠르게 배출하도록 하는 것이다. 본 연구의 목적은 유중 건조공정 중 다양한 운전 변수가 건조효율에 미치는 영향을 구체적으로 규명하기 위한 것이다. 변수 연구를 위하여 일련의 건조 실험과 수치해석을 시도하였으며 그 결과 건조온도, 건조시간, 폐오일종류, 슬러지 종류 등 중요 실험변수에 따른 건조곡선이 얻어졌다. 건조 온도 변화에 따른 연구 결과는 폐오일의 종류에 관계없이 140℃ 이상으로 운전하는 것이 건조효율에 유리한 것으로 나타났으며 이 결과는 수치 해석적 결과로도 확인되었다. 그리고 슬러지 직경의 경우 직경이 감소할수록 효율적으로 건조되는 경향으로 보였으며 이는 비표면적의 증가에 기인하는 것으로 판단되었다. 오일 종류나 물성의 변화에 대한 연구에서는 오일의 점도가 가시적인 영향을 주는 것으로 나타났다. 특히 점도가 높은 오일의 경우 건조 초반에 수분 증발이 현저히 지체되는 현상이 나타났다. 그러나 건조온도 140℃ 이상에서는 이러한 지체 현상이 감소하는 결과를 나타내었다. 슬러지 종류에 따른 연구에서는 전체적으로 큰 차이를 나타내지는 않았으나 하수슬러지가 다른 종류의 슬러지에 비하여 좀 더 가시적으로 양호한 수분제거 양상을 나타내었다. 수치 해석적 연구는 실험적 연구에 대한 상호보완적인 연구로서 가능성을 보였으나 복잡한 세부모델에 대한 경험적인 모델개발의 필요성이 제기되었다.
본 연구의 목적은 기존의 산업용 보일러에서 이산화탄소 배출저감을 위하여 연소가스 재순환에 의한 고온 순산소 연소기술을 개발하는데 있다. 이를 위해 실험실 규모의 LNG 연소기... more 본 연구의 목적은 기존의 산업용 보일러에서 이산화탄소 배출저감을 위하여 연소가스 재순환에 의한 고온 순산소 연소기술을 개발하는데 있다. 이를 위해 실험실 규모의 LNG 연소기에서 연소 화염특성을 평가하기 위한 조직적인 수치해석 연구가 일차적으로 수행되었다. 특히 본 연구에서 고려한 중요한 변수는 산소부화환경에서 계산된 연소가스의 재순환 정도이다. 배기가스 재순환이 없는 100% 순산소 연소환경에서 화염은 고온의 길고 가는 층류형상의 화염을 보였다. 이는 산화제 중에서 질소성분이 감소함으로써 약화된 난류혼합효과와 N2 가스에 의한 현열손실의 감소에 기인하는 것으로 판단하였으며 문헌에 발표된 실험과 일치된 결과를 보였다. O2/CO2 혼합가스에서 CO2 가스의 재순환율이 증가될수록 산화제의 유량 증가에 따른 강화된 난류혼합으로 인해 최고 화염온도가 버너 근처로 이동한 반면 전반적인 연소가스 온도는 N2에 비해 CO2의 높은 비열로 인해 낮아지는 현상을 보였다. 결국 80% 이상 CO2 가스를 재순환한 경우 연소가스의 온도가 급격하게 떨어지는 화염소멸 현상을 보여주었다. 그러나 30% O2/70% CO2의 혼합 연소조건에서는 기존의 공기연소와 유사한 가스온도를 나타내었다. 이외에도 공기연소와 동일한 유량조건에서 난류강도와 열수지 측면에서 화염특성 변화를 평가하기 위한 면밀한 연구가 수행되었다.
In this study, a pilot-scale reactor was designed and compared using computational fluid dynamics... more In this study, a pilot-scale reactor was designed and compared using computational fluid dynamics (CFD) for a high-efficiency CO2 methanation reaction. The trends of the CO2 methanation catalyst efficiency at a pilot or industrial scale could be lower than those measured at the laboratory scale, owing to the flow of fluid characteristics. Therefore, the CO2 methanation reactor was designed based on the results of the CFD analysis to minimize the above phenomenon. Ni–Ce–Zr was used to manufacture a CO2 methanation catalyst in the form of pellets. The catalyst successfully produced about 43.3 Nm3/d of methane from the reactor. This result shows that CO2 methanation, which is known as an exothermic reaction, was stable at the pilot scale. It is believed that the self-supply of energy will be possible when this CO2 methanation technology is applied to industrial processes generating large amounts of CO2 and H2 from by-product gases.
Numerical simulation in a 2-D rectangular coordinate and experimental study have been performed t... more Numerical simulation in a 2-D rectangular coordinate and experimental study have been performed to figure out the flow characteristics and concentration distribution of a large-scale rectangular final clarifier in wastewater treatment facility located in Busan, S. Korea. The purpose of numerical calculation is to verify the experimentally measured data by radioisotope tracer technique and further to understand the important physical feature occurring in a large-scale clarifier, in many cases which is not sufficient by the aid of limited number of experimental data. To this end, a comprehensive computer program is basically made by SIMPLE algorithm by Patankar with the special emphasis on the parametric evaluation of the various phenomenological models. Calculation results are successfully evaluated against experimental data obtained by the method of radioisotope tracer. Detailed comparison is made on the calculated residence time distribution (RTD) curves with measurement inside the clarifier as well as the exhaust. Further the calculation results predict well the well-known characteristics of clarifier flow such as the waterfall phenomenon at the front end of the clarifier, the bottom density current in the settling zone and the upward flow in the withdrawal zone. Thus it is believed that the flow calculation program and the data incorporation technique of radioisotope measurement employed in this study show the high possibility as a complementary tool of experiment in this area.
Journal of Korean Society of Environmental Engineers, 2009
대한환경공학회지I제31권 제11호I2009년 11월 ABSTRACT : One thing to note in cyclone operation and design is to m... more 대한환경공학회지I제31권 제11호I2009년 11월 ABSTRACT : One thing to note in cyclone operation and design is to minimize the pressure drop with the enhancement of the efficiency of dust collection. This can be facilitated by the detailed resolution of complex fluid flow occurring inside a cyclone. To this end, the main objective of this study was to obtain the detailed fluid dynamics by the development of a reliable computation method and thereby to figure out the physics of dust collection mechanism for more extreme environment caused by high temperature and pressure condition. First of all, the computer program developed was evaluated against experimental result. That is, the numerical calculation predicts well the data of experimental pressure drop as a function of flow rate for the elevated pressure and temperature condition employed in this study. The increase of pressure and temperature generally affects significantly the collection efficiency of fine particle but the effect of pressure and t...
Considering the severe regulation associated with sludge treatment such as direct landfill and oc... more Considering the severe regulation associated with sludge treatment such as direct landfill and ocean dumping, there is no doubt in that an advanced study for the proper treatment of sludge is urgently needed in near feature. As one of viable method for sludge treatment, fry-drying of sludge by waste oil has been investigated in this study. The fundamental mechanism of this drying method lies in the phenomenon of rapid moisture escape in the sludge pore toward oil media. This is caused by the severe pressure gradient formed by the rapid oil heating between sludge and oil. As part of research effort of fry-drying using waste oil, a series of basic study has been made experimentally to obtain typical drying curves as function of important parameters such as drying temperature, drying time, oil type and geometrical shape of sludge formed. Based on this study, a number of useful conclusion can be drawn as following. The fry-drying method by oil immersion was found quite effective in the ...
Journal of Korean Society of Environmental Engineers, 2010
The basic principle of fry drying process of sludge lies in the rapid pressure change of sludge m... more The basic principle of fry drying process of sludge lies in the rapid pressure change of sludge material caused by the change of temperature between oil and moisture due to the difference of specific heat. Therefore, the rapid increase of pressure in drying sludge induces the efficient moisture escape through sludge pores toward heating oil media. The object of this study is to carry out a systematic investigation of the influence of various parameters associated with the sludge fry drying processes on the drying efficiency. To this end, a series of parametric experimental investigation has been made together with the numerical calculation in order to obtain typical drying curves as function of important parameters such as drying temperature, sludge diameter, oil type and sludge type. In the aspect of frying temperature, especially it is found that the operation higher than 140°C was favorable in drying efficiency regardless of type of waste oil employed in this study. The same resu...
Considering the importance of the detailed resolution of the reacting flow field inside a gasifie... more Considering the importance of the detailed resolution of the reacting flow field inside a gasifier, the objective of this study lies on to investigate the effect of important variables to influence on the reacting flow and thereby to clarify the physical feature occurring inside the gasifier using a comprehensive gasifier computer program. Thus, in this study the gasification process of a 1.0 ton/day gasifier are numerically modeled using the Fluent code. And parametric investigation has been made in terms of swirl intensity and aspect ratio of the gasifier. Doing this, special attention is given on the detailed change of the reacting flow field inside a gasifier especially with the change of this kind of design and operation parameters. Based on this study, a number of useful conclusions can be drawn in the view of flow pattern inside gasifier together with the consequence of the gasification process caused by the change of the flow pattern. Especially, swirl effect gives rise to a feature of a central delayed recirculation zone, which is different from the typical strong central recirculation appeared near the inlet nozzle. The delayed feature of central recirculation appearance could be explained by the increased axial momentum due to the substantial amount of the presence of the coal slurry occupying over the entire gasifier in gasification process. Further, the changes of flow pattern are explained in detail with the gasifier aspect ratio. In general, the results obtained are physically acceptable in parametric study.
Journal of Material Cycles and Waste Management, 2011
The purpose of this study is to introduce an efficient drying method named “fry-drying technology... more The purpose of this study is to introduce an efficient drying method named “fry-drying technology” for the treatment of sewage sludge. The basic principle of this method lies in the rapid escape of moisture from sludge material through its pores into the oil medium driven by the strong pressure gradient formed between sludge and oil media. This beneficial pressure distribution for moisture transfer can be established by the subtle combination of the difference of physical properties of specific heat and boiling temperature between water and oil. In order to determine the physical characteristics of this fry-drying technology, a series of experiments were performed in which important parameters, such as heating oil temperature, drying time, oil type, and sludge size, were varied. Numerical calculations using a single solid spherical particle model without any porosity were used to resolve the particle size effect associated with sludge drying.
Journal of Korean Society of Environmental Engineers, 2010
대한환경공학회지I제32권 제2호I2010년 2월 ABSTRACT : The numerical modeling of a coal gasification reaction occu... more 대한환경공학회지I제32권 제2호I2010년 2월 ABSTRACT : The numerical modeling of a coal gasification reaction occurring in an entrained flow coal gasifier is presented in this study. The purposes of this study are to develop a reliable evaluation method of coal gasifier not only for the basic design but also further system operation optimization using a CFD(Computational Fluid Dynamics) method. The coal gasification reaction consists of a series of reaction processes such as water evaporation, coal devolatilization, heterogeneous char reactions, and coal-off gaseous reaction in two-phase, turbulent and radiation participating media. Both numerical and experimental studies are made for the 1.0 ton/day entrained flow coal gasifier installed in the Korea Institute of Energy Research (KIER). The comprehensive computer program in this study is made basically using commercial CFD program by implementing several subroutines necessary for gasification process, which include Eddy-Breakup model together with ...
Journal of the Nuclear Fuel Cycle and Waste Technology, 2004
Important operation parameters and performance of a high temperature ceramic candle filter system... more Important operation parameters and performance of a high temperature ceramic candle filter system were evaluated through a series of demonstration tests at a pilot-scale vitrification plant. At the initial period of each test, due to the growth of dust cake on the surface of ceramic candles, the pressure drop across the filter media increased sharply. After that it became stable to a certain range and varied continuously proportion to the face velocity of off-gas. On the contrary, at the initial period of each test, the permeability of filter element decreased rapidly and then it became stable. Back flushing of the filter system was effective under the back flushing air pressure range of 3∼5 bar. Based on the dust concentrations measured by iso-kinetic dust sampling at the inlet and outlet point of HTF, the dust collection efficiency of HTF evaluated. The result met the designed performance value of 99.9%. During the demonstration tests including a hundred hour long test, no specific failure or problem affecting the performance of HTF system were observed.
유중 건조 공정의 기본 원리는 수분과 비열차이가 있는 오일을 가열할 때 온도 차이에 따라 형성되는 슬러지 내부의 급격한 압력 변화를 이용한다. 즉 슬러지 내부에 발생하는 급격... more 유중 건조 공정의 기본 원리는 수분과 비열차이가 있는 오일을 가열할 때 온도 차이에 따라 형성되는 슬러지 내부의 급격한 압력 변화를 이용한다. 즉 슬러지 내부에 발생하는 급격한 압력 상승이 이루어질 때 슬러지 공극을 통하여 수분이 빠르게 배출하도록 하는 것이다. 본 연구의 목적은 유중 건조공정 중 다양한 운전 변수가 건조효율에 미치는 영향을 구체적으로 규명하기 위한 것이다. 변수 연구를 위하여 일련의 건조 실험과 수치해석을 시도하였으며 그 결과 건조온도, 건조시간, 폐오일종류, 슬러지 종류 등 중요 실험변수에 따른 건조곡선이 얻어졌다. 건조 온도 변화에 따른 연구 결과는 폐오일의 종류에 관계없이 140℃ 이상으로 운전하는 것이 건조효율에 유리한 것으로 나타났으며 이 결과는 수치 해석적 결과로도 확인되었다. 그리고 슬러지 직경의 경우 직경이 감소할수록 효율적으로 건조되는 경향으로 보였으며 이는 비표면적의 증가에 기인하는 것으로 판단되었다. 오일 종류나 물성의 변화에 대한 연구에서는 오일의 점도가 가시적인 영향을 주는 것으로 나타났다. 특히 점도가 높은 오일의 경우 건조 초반에 수분 증발이 현저히 지체되는 현상이 나타났다. 그러나 건조온도 140℃ 이상에서는 이러한 지체 현상이 감소하는 결과를 나타내었다. 슬러지 종류에 따른 연구에서는 전체적으로 큰 차이를 나타내지는 않았으나 하수슬러지가 다른 종류의 슬러지에 비하여 좀 더 가시적으로 양호한 수분제거 양상을 나타내었다. 수치 해석적 연구는 실험적 연구에 대한 상호보완적인 연구로서 가능성을 보였으나 복잡한 세부모델에 대한 경험적인 모델개발의 필요성이 제기되었다.
본 연구의 목적은 기존의 산업용 보일러에서 이산화탄소 배출저감을 위하여 연소가스 재순환에 의한 고온 순산소 연소기술을 개발하는데 있다. 이를 위해 실험실 규모의 LNG 연소기... more 본 연구의 목적은 기존의 산업용 보일러에서 이산화탄소 배출저감을 위하여 연소가스 재순환에 의한 고온 순산소 연소기술을 개발하는데 있다. 이를 위해 실험실 규모의 LNG 연소기에서 연소 화염특성을 평가하기 위한 조직적인 수치해석 연구가 일차적으로 수행되었다. 특히 본 연구에서 고려한 중요한 변수는 산소부화환경에서 계산된 연소가스의 재순환 정도이다. 배기가스 재순환이 없는 100% 순산소 연소환경에서 화염은 고온의 길고 가는 층류형상의 화염을 보였다. 이는 산화제 중에서 질소성분이 감소함으로써 약화된 난류혼합효과와 N2 가스에 의한 현열손실의 감소에 기인하는 것으로 판단하였으며 문헌에 발표된 실험과 일치된 결과를 보였다. O2/CO2 혼합가스에서 CO2 가스의 재순환율이 증가될수록 산화제의 유량 증가에 따른 강화된 난류혼합으로 인해 최고 화염온도가 버너 근처로 이동한 반면 전반적인 연소가스 온도는 N2에 비해 CO2의 높은 비열로 인해 낮아지는 현상을 보였다. 결국 80% 이상 CO2 가스를 재순환한 경우 연소가스의 온도가 급격하게 떨어지는 화염소멸 현상을 보여주었다. 그러나 30% O2/70% CO2의 혼합 연소조건에서는 기존의 공기연소와 유사한 가스온도를 나타내었다. 이외에도 공기연소와 동일한 유량조건에서 난류강도와 열수지 측면에서 화염특성 변화를 평가하기 위한 면밀한 연구가 수행되었다.
In this study, a pilot-scale reactor was designed and compared using computational fluid dynamics... more In this study, a pilot-scale reactor was designed and compared using computational fluid dynamics (CFD) for a high-efficiency CO2 methanation reaction. The trends of the CO2 methanation catalyst efficiency at a pilot or industrial scale could be lower than those measured at the laboratory scale, owing to the flow of fluid characteristics. Therefore, the CO2 methanation reactor was designed based on the results of the CFD analysis to minimize the above phenomenon. Ni–Ce–Zr was used to manufacture a CO2 methanation catalyst in the form of pellets. The catalyst successfully produced about 43.3 Nm3/d of methane from the reactor. This result shows that CO2 methanation, which is known as an exothermic reaction, was stable at the pilot scale. It is believed that the self-supply of energy will be possible when this CO2 methanation technology is applied to industrial processes generating large amounts of CO2 and H2 from by-product gases.
Numerical simulation in a 2-D rectangular coordinate and experimental study have been performed t... more Numerical simulation in a 2-D rectangular coordinate and experimental study have been performed to figure out the flow characteristics and concentration distribution of a large-scale rectangular final clarifier in wastewater treatment facility located in Busan, S. Korea. The purpose of numerical calculation is to verify the experimentally measured data by radioisotope tracer technique and further to understand the important physical feature occurring in a large-scale clarifier, in many cases which is not sufficient by the aid of limited number of experimental data. To this end, a comprehensive computer program is basically made by SIMPLE algorithm by Patankar with the special emphasis on the parametric evaluation of the various phenomenological models. Calculation results are successfully evaluated against experimental data obtained by the method of radioisotope tracer. Detailed comparison is made on the calculated residence time distribution (RTD) curves with measurement inside the clarifier as well as the exhaust. Further the calculation results predict well the well-known characteristics of clarifier flow such as the waterfall phenomenon at the front end of the clarifier, the bottom density current in the settling zone and the upward flow in the withdrawal zone. Thus it is believed that the flow calculation program and the data incorporation technique of radioisotope measurement employed in this study show the high possibility as a complementary tool of experiment in this area.
Journal of Korean Society of Environmental Engineers, 2009
대한환경공학회지I제31권 제11호I2009년 11월 ABSTRACT : One thing to note in cyclone operation and design is to m... more 대한환경공학회지I제31권 제11호I2009년 11월 ABSTRACT : One thing to note in cyclone operation and design is to minimize the pressure drop with the enhancement of the efficiency of dust collection. This can be facilitated by the detailed resolution of complex fluid flow occurring inside a cyclone. To this end, the main objective of this study was to obtain the detailed fluid dynamics by the development of a reliable computation method and thereby to figure out the physics of dust collection mechanism for more extreme environment caused by high temperature and pressure condition. First of all, the computer program developed was evaluated against experimental result. That is, the numerical calculation predicts well the data of experimental pressure drop as a function of flow rate for the elevated pressure and temperature condition employed in this study. The increase of pressure and temperature generally affects significantly the collection efficiency of fine particle but the effect of pressure and t...
Considering the severe regulation associated with sludge treatment such as direct landfill and oc... more Considering the severe regulation associated with sludge treatment such as direct landfill and ocean dumping, there is no doubt in that an advanced study for the proper treatment of sludge is urgently needed in near feature. As one of viable method for sludge treatment, fry-drying of sludge by waste oil has been investigated in this study. The fundamental mechanism of this drying method lies in the phenomenon of rapid moisture escape in the sludge pore toward oil media. This is caused by the severe pressure gradient formed by the rapid oil heating between sludge and oil. As part of research effort of fry-drying using waste oil, a series of basic study has been made experimentally to obtain typical drying curves as function of important parameters such as drying temperature, drying time, oil type and geometrical shape of sludge formed. Based on this study, a number of useful conclusion can be drawn as following. The fry-drying method by oil immersion was found quite effective in the ...
Journal of Korean Society of Environmental Engineers, 2010
The basic principle of fry drying process of sludge lies in the rapid pressure change of sludge m... more The basic principle of fry drying process of sludge lies in the rapid pressure change of sludge material caused by the change of temperature between oil and moisture due to the difference of specific heat. Therefore, the rapid increase of pressure in drying sludge induces the efficient moisture escape through sludge pores toward heating oil media. The object of this study is to carry out a systematic investigation of the influence of various parameters associated with the sludge fry drying processes on the drying efficiency. To this end, a series of parametric experimental investigation has been made together with the numerical calculation in order to obtain typical drying curves as function of important parameters such as drying temperature, sludge diameter, oil type and sludge type. In the aspect of frying temperature, especially it is found that the operation higher than 140°C was favorable in drying efficiency regardless of type of waste oil employed in this study. The same resu...
Considering the importance of the detailed resolution of the reacting flow field inside a gasifie... more Considering the importance of the detailed resolution of the reacting flow field inside a gasifier, the objective of this study lies on to investigate the effect of important variables to influence on the reacting flow and thereby to clarify the physical feature occurring inside the gasifier using a comprehensive gasifier computer program. Thus, in this study the gasification process of a 1.0 ton/day gasifier are numerically modeled using the Fluent code. And parametric investigation has been made in terms of swirl intensity and aspect ratio of the gasifier. Doing this, special attention is given on the detailed change of the reacting flow field inside a gasifier especially with the change of this kind of design and operation parameters. Based on this study, a number of useful conclusions can be drawn in the view of flow pattern inside gasifier together with the consequence of the gasification process caused by the change of the flow pattern. Especially, swirl effect gives rise to a feature of a central delayed recirculation zone, which is different from the typical strong central recirculation appeared near the inlet nozzle. The delayed feature of central recirculation appearance could be explained by the increased axial momentum due to the substantial amount of the presence of the coal slurry occupying over the entire gasifier in gasification process. Further, the changes of flow pattern are explained in detail with the gasifier aspect ratio. In general, the results obtained are physically acceptable in parametric study.
Journal of Material Cycles and Waste Management, 2011
The purpose of this study is to introduce an efficient drying method named “fry-drying technology... more The purpose of this study is to introduce an efficient drying method named “fry-drying technology” for the treatment of sewage sludge. The basic principle of this method lies in the rapid escape of moisture from sludge material through its pores into the oil medium driven by the strong pressure gradient formed between sludge and oil media. This beneficial pressure distribution for moisture transfer can be established by the subtle combination of the difference of physical properties of specific heat and boiling temperature between water and oil. In order to determine the physical characteristics of this fry-drying technology, a series of experiments were performed in which important parameters, such as heating oil temperature, drying time, oil type, and sludge size, were varied. Numerical calculations using a single solid spherical particle model without any porosity were used to resolve the particle size effect associated with sludge drying.
Journal of Korean Society of Environmental Engineers, 2010
대한환경공학회지I제32권 제2호I2010년 2월 ABSTRACT : The numerical modeling of a coal gasification reaction occu... more 대한환경공학회지I제32권 제2호I2010년 2월 ABSTRACT : The numerical modeling of a coal gasification reaction occurring in an entrained flow coal gasifier is presented in this study. The purposes of this study are to develop a reliable evaluation method of coal gasifier not only for the basic design but also further system operation optimization using a CFD(Computational Fluid Dynamics) method. The coal gasification reaction consists of a series of reaction processes such as water evaporation, coal devolatilization, heterogeneous char reactions, and coal-off gaseous reaction in two-phase, turbulent and radiation participating media. Both numerical and experimental studies are made for the 1.0 ton/day entrained flow coal gasifier installed in the Korea Institute of Energy Research (KIER). The comprehensive computer program in this study is made basically using commercial CFD program by implementing several subroutines necessary for gasification process, which include Eddy-Breakup model together with ...
Uploads
Papers by hey-suk Kim