We report the existence of phase-coupled oscillations in a model neural system. The model consist... more We report the existence of phase-coupled oscillations in a model neural system. The model consists of a group of excitatory principal cells in interaction with local inhibitory interneurons. The voltages across the membranes of excitatory cells are governed primarily by calcium and potassium ion conductivities. The number of potassium channels open at any given instant changes in accordance with a deterministic law. The time scale of this change is set by a constant which depends on midpoint potentials at which potassium and calcium currents are half-activated. The growth of mean membrane potential of excitatory principal cells is controlled by that of the inhibitory interneurons. Nonlinear oscillatory system associated with these limit cycles starting from two different initial conditions maintain a definite phase relationship. The phase-coupled oscillations in electrical activity of the neuronal cells carry together amplitude, phase, and time information for cellular signaling. Th...
The dynamical complexity of a system of ordinary differential equations (ODEs) modeling the dynam... more The dynamical complexity of a system of ordinary differential equations (ODEs) modeling the dynamics of a neuron that interacts with other neurons through on-off excitatory and inhibitory synapses in a neural system was investigated in detail. The model used Morris-Lecar (ML) equations with an additional autonomous variable representing the input from interaction of excitatory neuronal cells with local interneurons. Numerical simulations yielded a rich repertoire of dynamical behavior associated with this three-dimensional system, which included periodic, chaotic oscillation and rare bursts of episodic periodicity called the transient periodicity.
We report the existence of phase-coupled oscillations in a model neural system. The model consist... more We report the existence of phase-coupled oscillations in a model neural system. The model consists of a group of excitatory principal cells in interaction with local inhibitory interneurons. The voltages across the membranes of excitatory cells are governed primarily by calcium and potassium ion conductivities. The number of potassium channels open at any given instant changes in accordance with a deterministic law. The time scale of this change is set by a constant which depends on midpoint potentials at which potassium and calcium currents are half-activated. The growth of mean membrane potential of excitatory principal cells is controlled by that of the inhibitory interneurons. Nonlinear oscillatory system associated with these limit cycles starting from two different initial conditions maintain a definite phase relationship. The phase-coupled oscillations in electrical activity of the neuronal cells carry together amplitude, phase, and time information for cellular signaling. Th...
The dynamical complexity of a system of ordinary differential equations (ODEs) modeling the dynam... more The dynamical complexity of a system of ordinary differential equations (ODEs) modeling the dynamics of a neuron that interacts with other neurons through on-off excitatory and inhibitory synapses in a neural system was investigated in detail. The model used Morris-Lecar (ML) equations with an additional autonomous variable representing the input from interaction of excitatory neuronal cells with local interneurons. Numerical simulations yielded a rich repertoire of dynamical behavior associated with this three-dimensional system, which included periodic, chaotic oscillation and rare bursts of episodic periodicity called the transient periodicity.
Uploads
Papers by Vikas Rai