Experimental biology and medicine (Maywood, N.J.), Jan 10, 2014
Continuous glucose monitoring (CGM) is crucial in diabetic care. Long-term CGM systems however re... more Continuous glucose monitoring (CGM) is crucial in diabetic care. Long-term CGM systems however require an accurate sensor as well as a suitable measuring environment. Since large intravenous sensors are not feasible, measuring inside the interstitial fluid is considered the best alternative. This option, unfortunately, has the drawback of a lag time with blood glucose values. A good strategy to circumvent this is to enhance tissue integration and enrich the peri-implant vasculature. Implants of different optically transparent biomaterials (poly(methyl-methacrylate) [PMMA] and poly(dimethylsiloxane) [PDMS]) - enabling glucose monitoring in the near-infrared (NIR) spectrum - were surface-treated and subsequently implanted in goats at various implantation sites for up to 3 months. The overall in vivo biocompatibility, tissue integration, and vascularization at close proximity of the surfaces of these materials were assessed. Histological screening showed similar tissue reactions indepe...
Planar integrated optical biosensors are becoming more and more important as they facilitate labe... more Planar integrated optical biosensors are becoming more and more important as they facilitate label-free and real time monitoring biosensing with high sensitivity. In this paper, the systematic research on one kind of optical biosensor, based on a resonant principle in a polymer ring resonator, will be presented. Reduced footprint and high sensitivity are advantages of this kind of biosensor. Rather than expensive CMOS fabrication, the device with high performance is fabricated through a simple UV based soft imprint technique utilizing self-developed low loss polymer material. The measurement results for the bulk sensing of a NaCI solution and the surface sensing of a minimal amount of avidin molecules in a buffered solution will be presented.
In the present work, the development of imprinted polymers selective towards mycophenolic acid an... more In the present work, the development of imprinted polymers selective towards mycophenolic acid and their application in food analysis are reported for the first time. To synthesize the molecularly imprinted polymer (MIP) 4-vinylpyridine and ethyleneglycol dimethacrylate were applied as functional monomer and cross-linker, respectively. Besides the toxin itself, the implementation of structural analogues as templates was evaluated. A molecularly imprinted solid-phase extraction (MISPE) procedure was designed for the selective clean-up of maize extracts. Binding experiments and Scatchard analysis indicated the presence of specific binding sites in the imprinted polymers. The imprinting effect varied along with the selected template. The dissociation constant (K D ) of the higher affinity binding sites ranged from 0.8 mol/l to 15.6 mol/l, while the K D of the lower affinity binding sites was in the range of 138.5-519.3 mol/l. The performance of the MIPs throughout the clean-up of spiked maize sample extracts was evaluated and compared with the results obtained when applying a non-imprinted polymer. Depending on the polymers and the spiked concentration, recoveries after MISPE and non-imprinted solid-phase extraction varied respectively from 49% to 84% and from 28% to 31%. The imprinted polymers were superior regarding matrix effect, limit of detection (LOD) and limit of quantification (LOQ). LOD ranged from 0.17 g/kg to 0.25 g/kg and LOQ varied from 0.57 g/kg to 0.82 g/kg. Analysis of 15 maize samples by liquid chromatography tandem mass spectrometry revealed that the MIPs could be excellent sorbents for clean-up of contaminated food samples.
Experimental biology and medicine (Maywood, N.J.), Jan 10, 2014
Continuous glucose monitoring (CGM) is crucial in diabetic care. Long-term CGM systems however re... more Continuous glucose monitoring (CGM) is crucial in diabetic care. Long-term CGM systems however require an accurate sensor as well as a suitable measuring environment. Since large intravenous sensors are not feasible, measuring inside the interstitial fluid is considered the best alternative. This option, unfortunately, has the drawback of a lag time with blood glucose values. A good strategy to circumvent this is to enhance tissue integration and enrich the peri-implant vasculature. Implants of different optically transparent biomaterials (poly(methyl-methacrylate) [PMMA] and poly(dimethylsiloxane) [PDMS]) - enabling glucose monitoring in the near-infrared (NIR) spectrum - were surface-treated and subsequently implanted in goats at various implantation sites for up to 3 months. The overall in vivo biocompatibility, tissue integration, and vascularization at close proximity of the surfaces of these materials were assessed. Histological screening showed similar tissue reactions indepe...
Planar integrated optical biosensors are becoming more and more important as they facilitate labe... more Planar integrated optical biosensors are becoming more and more important as they facilitate label-free and real time monitoring biosensing with high sensitivity. In this paper, the systematic research on one kind of optical biosensor, based on a resonant principle in a polymer ring resonator, will be presented. Reduced footprint and high sensitivity are advantages of this kind of biosensor. Rather than expensive CMOS fabrication, the device with high performance is fabricated through a simple UV based soft imprint technique utilizing self-developed low loss polymer material. The measurement results for the bulk sensing of a NaCI solution and the surface sensing of a minimal amount of avidin molecules in a buffered solution will be presented.
In the present work, the development of imprinted polymers selective towards mycophenolic acid an... more In the present work, the development of imprinted polymers selective towards mycophenolic acid and their application in food analysis are reported for the first time. To synthesize the molecularly imprinted polymer (MIP) 4-vinylpyridine and ethyleneglycol dimethacrylate were applied as functional monomer and cross-linker, respectively. Besides the toxin itself, the implementation of structural analogues as templates was evaluated. A molecularly imprinted solid-phase extraction (MISPE) procedure was designed for the selective clean-up of maize extracts. Binding experiments and Scatchard analysis indicated the presence of specific binding sites in the imprinted polymers. The imprinting effect varied along with the selected template. The dissociation constant (K D ) of the higher affinity binding sites ranged from 0.8 mol/l to 15.6 mol/l, while the K D of the lower affinity binding sites was in the range of 138.5-519.3 mol/l. The performance of the MIPs throughout the clean-up of spiked maize sample extracts was evaluated and compared with the results obtained when applying a non-imprinted polymer. Depending on the polymers and the spiked concentration, recoveries after MISPE and non-imprinted solid-phase extraction varied respectively from 49% to 84% and from 28% to 31%. The imprinted polymers were superior regarding matrix effect, limit of detection (LOD) and limit of quantification (LOQ). LOD ranged from 0.17 g/kg to 0.25 g/kg and LOQ varied from 0.57 g/kg to 0.82 g/kg. Analysis of 15 maize samples by liquid chromatography tandem mass spectrometry revealed that the MIPs could be excellent sorbents for clean-up of contaminated food samples.
Uploads
Papers by Valérie Kodeck