Gene expression in skeletal muscle fibers is regulated by innervation and intrinsic fiber propert... more Gene expression in skeletal muscle fibers is regulated by innervation and intrinsic fiber properties. To determine the mechanism of repression of slow MyHC2 expression in innervated fast pectoralis major (PM) fibers, we investigated the function of the muscarinic acetylcholine receptor (mAchR) and Gαq. Both mAchR and Gαq are abundant in medial adductor (MA) and PM fibers, and mAchR and Gαq interact in these fibers. Whereas innervation of PM fibers was insufficient to induce slow MyHC2 expression, inhibition of mAchR activity with atropine in innervated PM fibers induced slow MyHC2 expression. Increased Gαq activity repressed slow MyHC2 expression to nondetectable levels in innervated MA fibers. Reduced mAchR activity decreased PKC activity in PM fibers, and increased Gαq activity increased PKC activity in PM and MA fibers. Decreased PKC activity in atropine-treated innervated PM fibers correlated with slow MyHC2 expression. These data suggest that slow MyHC2 repression in innervated...
Skeletal muscle fiber type is regulated by innervation-induced cell signaling including calcium r... more Skeletal muscle fiber type is regulated by innervation-induced cell signaling including calcium release mechanisms that lead to transcriptional activation of fiber type-specific genes. Avian fast pectoralis major (PM) and slow medial adductor (MA) muscles differentially control expression of the slow myosin heavy chain 2 (slow MyHC2) gene. We report here that slow MyHC2 gene expression in fast PM muscle fibers is repressed by endogenous activity of the ryanodine receptor 1 (RyR1). Inhibition of RyR1 with ryanodine led to expression of the slow MyHC2 gene in innervated PM muscle fibers in vitro. Administration of ryanodine to innervated PM muscle fibers also decreased protein kinase C (PKC) activity, the reduction of which is necessary for slow MyHC2 gene expression in both PM and MA muscle fibers. Furthermore, RyR1 inhibition increased slow MyHC2 promoter activity in innervated PM muscle fibers and enhanced transcriptional activities of nuclear factor of activated T cells (NFAT) and...
Innervation-dependent signaling cascades that control activation of downstream transcription fact... more Innervation-dependent signaling cascades that control activation of downstream transcription factors regulate expression of skeletal muscle fiber type-specific genes. Many of the innervation-regulated signaling cascades in skeletal muscle are dependent on intracellular calcium and the mechanisms by which calcium is released from the sarcoplasmic reticulum (SR). We report that the inositol trisphosphate receptor 1 (IP3R1), responsible for calcium release from the SR as a slow wave, was more abundant in fast contracting compared to slow contracting avian muscle fibers. Furthermore, inhibition of IP3R1 activity by 2-aminoethoxydiphenylborate (2-APB) and xestospongin D induced a fiber type transition and expression of the slow myosin heavy chain 2 (slow MyHC2) gene in innervated fast muscle fibers. Activation of the slow MyHC2 promoter by IP3R1 inhibition was accompanied by a reduction in protein kinase C activity. In addition, inhibition of IP3R1 activity resulted in a reduction of nuc...
Skeletal muscle fiber type is regulated, in part, by innervation leading to transcriptional regul... more Skeletal muscle fiber type is regulated, in part, by innervation leading to transcriptional regulation of fiber typespecific genes. Here, we report the initial characterization of the transcriptional regulation of the slow myosin heavy chain 2 (MyHC2) promoter in innervated and noninnervated slow medial adductor (MA) and fast pectoralis major (PM) muscle fibers in cell culture. The proximal 1358 bp of slow MyHC2 upstream DNA contains a functional E-box and binding sites for myocyte enhancer factor 2 (MEF2) and nuclear factor of activated T cells (NFAT). Mutagenesis studies indicated that both MEF2 and NFAT binding sites are required for innervation-induced slow MyHC2 promoter activity in MA muscle fibers. However, MEF2 transcription factor activity was unaffected by innervation and did not demonstrate fiber type-specific interactions with the slow MyHC2 MEF2 binding site. NFAT transcription factor activity did increase in innervated MA muscle fibers and not in PM muscle fibers, indicating innervation and muscle fiber type-specific regulation. However, transfection of constitutively active NFAT indicated that NFAT is insufficient to induce slow MyHC2 gene expression in either fast PM or slow MA muscle fibers without innervation. These results indicate the requirement for MEF2 and NFAT in innervation-induced slow MyHC2 gene expression and suggest that additional innervation-dependent and fiber type-specific control of slow MyHC2 gene expression resides in MA and PM muscle fibers, respectively. Developmental Dynamics 231:292-302, 2004.
Gene expression in skeletal muscle fibers is regulated by innervation and intrinsic fiber propert... more Gene expression in skeletal muscle fibers is regulated by innervation and intrinsic fiber properties. To determine the mechanism of repression of slow MyHC2 expression in innervated fast pectoralis major (PM) fibers, we investigated the function of the muscarinic acetylcholine receptor (mAchR) and Gαq. Both mAchR and Gαq are abundant in medial adductor (MA) and PM fibers, and mAchR and Gαq interact in these fibers. Whereas innervation of PM fibers was insufficient to induce slow MyHC2 expression, inhibition of mAchR activity with atropine in innervated PM fibers induced slow MyHC2 expression. Increased Gαq activity repressed slow MyHC2 expression to nondetectable levels in innervated MA fibers. Reduced mAchR activity decreased PKC activity in PM fibers, and increased Gαq activity increased PKC activity in PM and MA fibers. Decreased PKC activity in atropine-treated innervated PM fibers correlated with slow MyHC2 expression. These data suggest that slow MyHC2 repression in innervated...
Skeletal muscle fiber type is regulated by innervation-induced cell signaling including calcium r... more Skeletal muscle fiber type is regulated by innervation-induced cell signaling including calcium release mechanisms that lead to transcriptional activation of fiber type-specific genes. Avian fast pectoralis major (PM) and slow medial adductor (MA) muscles differentially control expression of the slow myosin heavy chain 2 (slow MyHC2) gene. We report here that slow MyHC2 gene expression in fast PM muscle fibers is repressed by endogenous activity of the ryanodine receptor 1 (RyR1). Inhibition of RyR1 with ryanodine led to expression of the slow MyHC2 gene in innervated PM muscle fibers in vitro. Administration of ryanodine to innervated PM muscle fibers also decreased protein kinase C (PKC) activity, the reduction of which is necessary for slow MyHC2 gene expression in both PM and MA muscle fibers. Furthermore, RyR1 inhibition increased slow MyHC2 promoter activity in innervated PM muscle fibers and enhanced transcriptional activities of nuclear factor of activated T cells (NFAT) and...
Innervation-dependent signaling cascades that control activation of downstream transcription fact... more Innervation-dependent signaling cascades that control activation of downstream transcription factors regulate expression of skeletal muscle fiber type-specific genes. Many of the innervation-regulated signaling cascades in skeletal muscle are dependent on intracellular calcium and the mechanisms by which calcium is released from the sarcoplasmic reticulum (SR). We report that the inositol trisphosphate receptor 1 (IP3R1), responsible for calcium release from the SR as a slow wave, was more abundant in fast contracting compared to slow contracting avian muscle fibers. Furthermore, inhibition of IP3R1 activity by 2-aminoethoxydiphenylborate (2-APB) and xestospongin D induced a fiber type transition and expression of the slow myosin heavy chain 2 (slow MyHC2) gene in innervated fast muscle fibers. Activation of the slow MyHC2 promoter by IP3R1 inhibition was accompanied by a reduction in protein kinase C activity. In addition, inhibition of IP3R1 activity resulted in a reduction of nuc...
Skeletal muscle fiber type is regulated, in part, by innervation leading to transcriptional regul... more Skeletal muscle fiber type is regulated, in part, by innervation leading to transcriptional regulation of fiber typespecific genes. Here, we report the initial characterization of the transcriptional regulation of the slow myosin heavy chain 2 (MyHC2) promoter in innervated and noninnervated slow medial adductor (MA) and fast pectoralis major (PM) muscle fibers in cell culture. The proximal 1358 bp of slow MyHC2 upstream DNA contains a functional E-box and binding sites for myocyte enhancer factor 2 (MEF2) and nuclear factor of activated T cells (NFAT). Mutagenesis studies indicated that both MEF2 and NFAT binding sites are required for innervation-induced slow MyHC2 promoter activity in MA muscle fibers. However, MEF2 transcription factor activity was unaffected by innervation and did not demonstrate fiber type-specific interactions with the slow MyHC2 MEF2 binding site. NFAT transcription factor activity did increase in innervated MA muscle fibers and not in PM muscle fibers, indicating innervation and muscle fiber type-specific regulation. However, transfection of constitutively active NFAT indicated that NFAT is insufficient to induce slow MyHC2 gene expression in either fast PM or slow MA muscle fibers without innervation. These results indicate the requirement for MEF2 and NFAT in innervation-induced slow MyHC2 gene expression and suggest that additional innervation-dependent and fiber type-specific control of slow MyHC2 gene expression resides in MA and PM muscle fibers, respectively. Developmental Dynamics 231:292-302, 2004.
Uploads
Papers by Theresa Jordan