Peminatan studi pada STMIK Amik Riau merupakan pilihan minat berdasarkan kemampuan khusus dan ket... more Peminatan studi pada STMIK Amik Riau merupakan pilihan minat berdasarkan kemampuan khusus dan ketertarikan mahasiswa. Program studi Teknik Informatika STMIK Amik Riau memiliki dua bidang peminatan, yaitu bisnis dan jaringan. Peminatan disesuaikan dengan kemampuan dan ketertarikan dari mahasiswa serta harus dipilih dengan baik dan tepat. Pengambilan peminatan sangat berpengaruh terhadap tugas akhir dan tingkat kelulusan mahasiswa. Pemilihan peminatan studi oleh mahasiswa saat ini hanya mengikuti teman dan tidak berdasarkan kemampuan, sehingga sebuah Sistem klasifikasi peminatan merupakan salah satu solusi untuk menyelesaikan permasalahan pemilihan peminatan pada program studi karena dianggap mampu memberikan rekomendasi pemintan yang baik dan tepat. Algoritma K-Nearest Neighbor (K-NN) merupakan algoritma klasifikasi yang dapat digunakan sebagai solusi dalam pengelompokan data. Pada penelitian ini data yang digunakan diperoleh dari nilai mata kuliah prasyarat selama semester satu hingga semester lima. Data diolah dengan membangun aplikasi yang menerapkan algoritma K-NN menggunakan PHP dan MySQL. Hasil keluaran sistem memiliki akurasi 100% dibandingkan hasil perhitungan manual menggunakan Ms. Excel. Pengujian menggunakan tools RapidMiner untuk mengukur performa algoritma. Hasil pengujian yang dilakukan terhadap 183 data latih dan 100 data uji menyatakan algoritma K-NN memiliki performa dengan hasil Acuracy, Recall, Precision, F Measure, dan Clasificassion Error dengan nilai 98%, 100%, 100%, 91.67%, dan 2%. Penelitian ini dapat memberikan rekomendasi peminatan studi kepada mahasiswa Teknik Informatika STMIK Amik Riau.
Peminatan studi pada STMIK Amik Riau merupakan pilihan minat berdasarkan kemampuan khusus dan ket... more Peminatan studi pada STMIK Amik Riau merupakan pilihan minat berdasarkan kemampuan khusus dan ketertarikan mahasiswa. Program studi Teknik Informatika STMIK Amik Riau memiliki dua bidang peminatan, yaitu bisnis dan jaringan. Peminatan disesuaikan dengan kemampuan dan ketertarikan dari mahasiswa serta harus dipilih dengan baik dan tepat. Pengambilan peminatan sangat berpengaruh terhadap tugas akhir dan tingkat kelulusan mahasiswa. Pemilihan peminatan studi oleh mahasiswa saat ini hanya mengikuti teman dan tidak berdasarkan kemampuan, sehingga sebuah Sistem klasifikasi peminatan merupakan salah satu solusi untuk menyelesaikan permasalahan pemilihan peminatan pada program studi karena dianggap mampu memberikan rekomendasi pemintan yang baik dan tepat. Algoritma K-Nearest Neighbor (K-NN) merupakan algoritma klasifikasi yang dapat digunakan sebagai solusi dalam pengelompokan data. Pada penelitian ini data yang digunakan diperoleh dari nilai mata kuliah prasyarat selama semester satu hingga semester lima. Data diolah dengan membangun aplikasi yang menerapkan algoritma K-NN menggunakan PHP dan MySQL. Hasil keluaran sistem memiliki akurasi 100% dibandingkan hasil perhitungan manual menggunakan Ms. Excel. Pengujian menggunakan tools RapidMiner untuk mengukur performa algoritma. Hasil pengujian yang dilakukan terhadap 183 data latih dan 100 data uji menyatakan algoritma K-NN memiliki performa dengan hasil Acuracy, Recall, Precision, F Measure, dan Clasificassion Error dengan nilai 98%, 100%, 100%, 91.67%, dan 2%. Penelitian ini dapat memberikan rekomendasi peminatan studi kepada mahasiswa Teknik Informatika STMIK Amik Riau.
Uploads
Papers by Siti Aisyah