Neurodegeneration is a hallmark of many neurological diseases, including Alzheimer's, Parkinson's... more Neurodegeneration is a hallmark of many neurological diseases, including Alzheimer's, Parkinson's and the polyglutamine diseases, which are all caused by misfolded proteins that accumulate in neuronal cells of the brain. Although apoptosis is believed to contribute to neurodegeneration in these cases, genetic mouse models of these diseases often fail to replicate apoptosis and overt neurodegeneration in the brain. Using nuclear transfer, we generated transgenic Huntington's disease (HD) pigs that express N-terminal (208 amino acids) mutant huntingtin with an expanded polyglutamine tract (105Q). Postnatal death, dyskinesia and chorea-like movement were observed in some transgenic pigs that express mutant huntingtin. Importantly, the transgenic HD pigs, unlike mice expressing the same transgene, displayed typical apoptotic neurons with DNA fragmentation in their brains. Also, expression of mutant huntingtin resulted in more neurons with activated caspase-3 in transgenic pig brains than that in transgenic mouse brains. Our findings suggest that species differences determine neuropathology and underscore the importance of large mammalian animals for modeling neurological disorders.
The neurodegenerative polyglutamine diseases are caused by an expansion of unstable polyglutamine... more The neurodegenerative polyglutamine diseases are caused by an expansion of unstable polyglutamine repeats in various disease proteins. Although these mutant proteins are expressed ubiquitously in neuronal and non-neuronal cells, they cause selective degeneration of specific neuronal populations. Recently, increasing evidence shows that polyglutamine disease proteins also affect non-neuronal cells. However, it remains unclear how the expression of polyglutamine proteins in non-neuronal cells contributes to the course of the polyglutamine diseases. Here, we discuss recent findings about the expression of mutant polyglutamine proteins in non-neuronal cells and their influence on neurological symptoms. Understanding the contribution of non-neuronal polyglutamine proteins to disease progression will help elucidate disease mechanisms and also help in the development of new treatment options.
This intrabody decreases the cytotoxicity of mutant huntingtin and its distribution in neuronal p... more This intrabody decreases the cytotoxicity of mutant huntingtin and its distribution in neuronal processes. When expressed in the striatum of HD mice via adenoviral infection, the intrabody reduces neuropil aggregate formation and ameliorates neurological symptoms. Interaction of the intrabody with mutant huntingtin increases the ubiquitination of cytoplasmic huntingtin and its degradation. These fi ndings suggest that the intrabody reduces the specifi c neurotoxicity of cytoplasmic mutant huntingtin and its associated neurological symptoms by preventing the accumulation of mutant huntingtin in neuronal processes and promoting its clearance in the cytoplasm.
Huntington's disease (HD) belongs to a family of neurodegenerative diseases caused by misfolded p... more Huntington's disease (HD) belongs to a family of neurodegenerative diseases caused by misfolded proteins and shares the pathological hallmark of selective accumulation of misfolded proteins in neuronal cells. Polyglutamine expansion in the HD protein, huntingtin (Htt), causes selective neurodegeneration that is more severe in the striatum and cortex than in other brain regions, but the mechanism behind this selectivity is unknown. Here we report that in HD knock-in mice, the expression levels of mutant Htt (mHtt) are higher in brain tissues than in peripheral tissues. However, the expression of N-terminal mHtt via stereotaxic injection of viral vectors in mice also results in greater accumulation of mHtt in the striatum than in muscle. We developed an in vitro assay that revealed that extracts from the striatum and cortex promote the formation of high-molecular weight (HMW) mHtt compared with the relatively unaffected cerebellar and peripheral tissue extracts. Inhibition of ubiquitin-activating enzyme E1 (Ube1) increased the levels of HMW mHtt in the relatively unaffected tissues. Importantly, the expression levels of Ube1 are lower in brain tissues than peripheral tissues and decline in the nuclear fraction with age, which is correlated with the increased accumulation of mHtt in the brain and neuronal nuclei during aging. Our findings suggest that decreased targeting of misfolded Htt to the proteasome for degradation via Ube1 may underlie the preferential accumulation of toxic forms of mHtt in the brain and its selective neurodegeneration.
Huntington's disease (HD) is caused by polyglutamine (polyQ) expansion in huntingtin (htt), a lar... more Huntington's disease (HD) is caused by polyglutamine (polyQ) expansion in huntingtin (htt), a large (350 kDa) protein that localizes predominantly to the cytoplasm. Proteolytic cleavage of mutant htt yields polyQ-containing N-terminal fragments that are prone to misfolding and aggregation. Disease progression in HD transgenic models correlates with age-related accumulation of soluble and aggregated forms of N-terminal mutant htt fragments, suggesting that multiple forms of mutant htt are involved in the selective neurodegeneration in HD. Although mitochondrial dysfunction is implicated in the pathogenesis of HD, it remains unclear which forms of cytoplasmic mutant htt associate with mitochondria to affect their function. Here we demonstrate that specific N-terminal mutant htt fragments associate with mitochondria in Hdh(CAG)150 knock-in mouse brain and that this association increases with age. The interaction between soluble N-terminal mutant htt and mitochondria interferes with the in vitro association of microtubule-based transport proteins with mitochondria. Mutant htt reduces the distribution and transport rate of mitochondria in the processes of cultured neuronal cells. Reduced ATP level was also found in the synaptosomal fraction isolated from Hdh(CAG)150 knock-in mouse brain. These findings suggest that specific N-terminal mutant htt fragments, before the formation of aggregates, can impair mitochondrial function directly and that this interaction may be a novel target for therapeutic strategies in HD.
Spinocerebellar ataxia 17 (SCA17) belongs to the family of neurodegenerative diseases caused by p... more Spinocerebellar ataxia 17 (SCA17) belongs to the family of neurodegenerative diseases caused by polyglutamine (polyQ) expansion. In SCA17, polyQ expansion occurs in the TATA box binding protein (TBP) and leads to the misfolding of TBP and the preferential degeneration in the cerebellar Purkinje neurons. Currently there is no effective treatment for SCA17. Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a recently identified neurotrophic factor, and increasing MANF expression ameliorated SCA17 neuropathology in TBP-105Q knock-in (KI) mouse model, indicating that MANF could be a therapeutic target for treating SCA17. In this study, we screened a collection of 2000 FDA-approved chemicals using a stable cell line expressing luciferase reporter, which is driven by MANF promoter. We identified several potential candidates that can induce the expression of MANF. Of these inducers, piperine is an agent that potently induces the luciferase expression or MANF expression. Additio...
Proceedings of the National Academy of Sciences of the United States of America, Sep 28, 2017
Although it is well known that astrocytes are less vulnerable than neurons in neurodegenerative d... more Although it is well known that astrocytes are less vulnerable than neurons in neurodegenerative diseases, the mechanism behind this differential vulnerability is unclear. Here we report that neurons and astrocytes show markedly different activities in C terminus of Hsp70-interacting protein (CHIP), a cochaperone of Hsp70. In astrocytes, CHIP is more actively monoubiquitinated and binds to mutant huntingtin (mHtt), the Huntington's disease protein, more avidly, facilitating its K48-linked polyubiquitination and degradation. Astrocytes also show the higher level and heat-shock induction of Hsp70 and faster CHIP-mediated degradation of various misfolded proteins than neurons. In contrast to astrocytes, neurons express abundant HspBP1, a CHIP inhibitory protein, resulting in the low activity of CHIP. Silencing HspBP1 expression via CRISPR-Cas9 in neurons ameliorated mHtt aggregation and neuropathology in HD knockin mouse brains. Our findings indicate a critical role of HspBP1 in dif...
The Journal of neuroscience : the official journal of the Society for Neuroscience, Jan 18, 2017
Spinocerebellar ataxia 17 (SCA17) is caused by polyglutamine (polyQ) repeat expansion in the TATA... more Spinocerebellar ataxia 17 (SCA17) is caused by polyglutamine (polyQ) repeat expansion in the TATA-binding protein (TBP) and is among a family of neurodegenerative diseases in which polyQ expansion leads to preferential neuronal loss in the brain. Although previous studies have demonstrated that expression of polyQ-expanded proteins in glial cells can cause neuronal injury via non-cell-autonomous mechanisms, these studies investigated animal models that overexpress transgenic mutant proteins. Since glial cells are particularly reactive to overexpressed mutant proteins, it is important to investigate the in vivo role of glial dysfunction in neurodegeneration when mutant polyQ proteins are endogenously expressed. In the current study, we generated two conditional TBP-105Q knock-in (KI) mouse models that specifically express mutant TBP at the endogenous level in neurons or in astrocytes. We found that mutant TBP expression in neuronal cells or astrocytes alone only caused mild neurodege...
Spinocerebellar ataxia type 17 (SCA17) is a type of autosomal dominant cerebellar ataxia (ADCA) c... more Spinocerebellar ataxia type 17 (SCA17) is a type of autosomal dominant cerebellar ataxia (ADCA) characterized by variable manifestations, including cerebellar ataxia, dementia, and psychiatric symptoms. Since the identification of a CAG repeat expansion in the TATA-box binding protein (TBP) gene in a patient with ataxia in 1999 and then verification of this expansion in patients with SCA17 in 2001, several SCA17 rodent models, including both knock-in and transgenic models in mice and rats, have been established to explore the phenotypic features and pathogenesis of SCA17. These animal models revealed different pathological changes and phenotypes that are associated with the expression of mutant TBP protein and the CAG repeat lengths. It is important to understand how mutant TBP can cause differential pathological events in SCA17 animal models. In this review, we summarize and compare these animal models for the nature of transgenes and their expression as well as phenotypical featur...
Spinocerebellar ataxia 17 (SCA17) belongs to the family of 9 genetically inherited, late-onset ne... more Spinocerebellar ataxia 17 (SCA17) belongs to the family of 9 genetically inherited, late-onset neurodegenerative diseases, which are caused by polyglutamine (polyQ) expansion in different proteins. In SCA17, the polyQ expansion occurs in the TATA box binding protein (TBP), which functions as a general transcription factor. Patients with SCA17 suffer from a broad array of motor and non-motor defects, and their life expectancy is normally within 20 y after the initial appearance of symptoms. Currently there is no effective treatment, but remarkable efforts have been devoted to tackle this devastating disorder. In this review, we will summarize our current knowledge about the molecular mechanisms underlying the pathogenesis of SCA17, with a primary focus on transcriptional dysregulations. We believe that impaired transcriptional activities caused by mutant TBP with polyQ expansion is a major form of toxicity contributing to SCA17 pathogenesis, and rectifying the altered level of downstream transcripts represents a promising therapeutic approach for the treatment of SCA17.
The Huntington's disease (HD) protein, huntingtin (HTT), is a large protein consisting of 314... more The Huntington's disease (HD) protein, huntingtin (HTT), is a large protein consisting of 3144 amino acids and has conserved N-terminal sequences that are followed by a polyglutamine (polyQ) repeat. Loss of Htt is known to cause embryonic lethality in mice, whereas polyQ expansion leads to adult neuronal degeneration. Whether N-terminal HTT is essential for neuronal development or contributes only to late-onset neurodegeneration remains unknown. We established HTT knock-in mice (N160Q-KI) expressing the first 208 amino acids of HTT with 160Q, and they show age-dependent HTT aggregates in the brain and neurological phenotypes. Importantly, the N-terminal mutant HTT also preferentially accumulates in the striatum, the brain region most affected in HD, indicating the importance of N-terminal HTT in selective neuropathology. That said, homozygous N160Q-KI mice are also embryonic lethal, suggesting that N-terminal HTT alone is unable to support embryonic development. Using Htt knocko...
In polyglutamine (polyQ) diseases, large polyQ repeats cause juvenile cases with different sympto... more In polyglutamine (polyQ) diseases, large polyQ repeats cause juvenile cases with different symptoms than adult-onset patients, who carry smaller expanded polyQ repeats. The mechanisms behind the differential pathology mediated by different polyQ repeat lengths remain unknown. By studying knock-in mouse models of spinal cerebellar ataxia-17 (SCA17), we found that a large polyQ (105 glutamines) in the TATA box-binding protein (TBP) preferentially causes muscle degeneration and reduces the expression of muscle-specific genes. Direct expression of TBP with different polyQ repeats in mouse muscle revealed that muscle degeneration is mediated only by the large polyQ repeats. Different polyQ repeats differentially alter TBP's interaction with neuronal and muscle-specific transcription factors. As a result, the large polyQ repeat decreases the association of MyoD with TBP and DNA promoters. Our findings suggest that specific alterations in protein interactions by large polyQ repeats may account for the unique pathology in juvenile polyQ diseases.
The Journal of neuroscience : the official journal of the Society for Neuroscience, Jan 18, 2014
Huntington's disease (HD) belongs to a family of neurodegenerative diseases caused by misfold... more Huntington's disease (HD) belongs to a family of neurodegenerative diseases caused by misfolded proteins and shares the pathological hallmark of selective accumulation of misfolded proteins in neuronal cells. Polyglutamine expansion in the HD protein, huntingtin (Htt), causes selective neurodegeneration that is more severe in the striatum and cortex than in other brain regions, but the mechanism behind this selectivity is unknown. Here we report that in HD knock-in mice, the expression levels of mutant Htt (mHtt) are higher in brain tissues than in peripheral tissues. However, the expression of N-terminal mHtt via stereotaxic injection of viral vectors in mice also results in greater accumulation of mHtt in the striatum than in muscle. We developed an in vitro assay that revealed that extracts from the striatum and cortex promote the formation of high-molecular weight (HMW) mHtt compared with the relatively unaffected cerebellar and peripheral tissue extracts. Inhibition of ubiq...
Huntington's disease (HD) is caused by polyglutamine (polyQ) expansion in huntingtin (htt), a... more Huntington's disease (HD) is caused by polyglutamine (polyQ) expansion in huntingtin (htt), a large (350 kDa) protein that localizes predominantly to the cytoplasm. Proteolytic cleavage of mutant htt yields polyQ-containing N-terminal fragments that are prone to misfolding and aggregation. Disease progression in HD transgenic models correlates with age-related accumulation of soluble and aggregated forms of N-terminal mutant htt fragments, suggesting that multiple forms of mutant htt are involved in the selective neurodegeneration in HD. Although mitochondrial dysfunction is implicated in the pathogenesis of HD, it remains unclear which forms of cytoplasmic mutant htt associate with mitochondria to affect their function. Here we demonstrate that specific N-terminal mutant htt fragments associate with mitochondria inHdh(CAG)150 knock-in mouse brain and that this association increases with age. The interaction between soluble N-terminal mutant htt and mitochondria interferes with ...
To elucidate the pathogenic mechanisms in Huntington's disease (HD) elicited by expression of ful... more To elucidate the pathogenic mechanisms in Huntington's disease (HD) elicited by expression of full-length human mutant huntingtin (fl-mhtt), a bacterial artificial chromosome (BAC)-mediated transgenic mouse model (BACHD) was developed expressing fl-mhtt with 97 glutamine repeats under the control of endogenous htt regulatory machinery on the BAC. BACHD mice exhibit progressive motor deficits, neuronal synaptic dysfunction, and late-onset selective neuropathology, which includes significant cortical and striatal atrophy and striatal dark neuron degeneration. Power analyses reveal the robustness of the behavioral and neuropathological phenotypes, suggesting BACHD as a suitable fl-mhtt mouse model for preclinical studies. Additional analyses of BACHD mice provide novel insights into how mhtt may elicit neuropathogenesis. First, unlike previous fl-mhtt mouse models, BACHD mice reveal that the slowly progressive and selective pathogenic process in HD mouse brains can occur without early and diffuse nuclear accumulation of aggregated mhtt (i.e., as detected by immunostaining with the EM48 antibody). Instead, a relatively steady-state level of predominantly full-length mhtt and a small amount of mhtt N-terminal fragments are sufficient to elicit the disease process. Second, the polyglutamine repeat within fl-mhtt in BACHD mice is encoded by a mixed CAA-CAG repeat, which is stable in both the germline and somatic tissues including the cortex and striatum at the onset of neuropathology. Therefore, our results suggest that somatic repeat instability does not play a necessary role in selective neuropathogenesis in BACHD mice. In summary, the BACHD model constitutes a novel and robust in vivo paradigm for the investigation of HD pathogenesis and treatment.
Huntington disease (HD) is characterized by the preferential loss of striatal medium-sized spiny ... more Huntington disease (HD) is characterized by the preferential loss of striatal medium-sized spiny neurons (MSNs) in the brain. Because MSNs receive abundant glutamatergic input, their vulnerability to excitotoxicity may be largely influenced by the capacity of glial cells to remove extracellular glutamate. However, little is known about the role of glia in HD neuropathology. Here, we report that mutant huntingtin accumulates in glial nuclei in HD brains and decreases the expression of glutamate transporters. As a result, mutant huntingtin (htt) reduces glutamate uptake in cultured astrocytes and HD mouse brains. In a neuron–glia coculture system, wild-type glial cells protected neurons against mutant htt-mediated neurotoxicity, whereas glial cells expressing mutant htt increased neuronal vulnerability. Mutant htt in cultured astrocytes decreased their protection of neurons against glutamate excitotoxicity. These findings suggest that decreased glutamate uptake caused by glial mutant ...
Although NH2-terminal mutant huntingtin (htt) fragments cause neurological disorders in Huntingto... more Although NH2-terminal mutant huntingtin (htt) fragments cause neurological disorders in Huntington's disease (HD), it is unclear how toxic htt fragments are generated and contribute to the disease process. Here, we report that complex NH2-terminal mutant htt fragments smaller than the first 508 amino acids were generated in htt-transfected cells and HD knockin mouse brains. These fragments constituted neuronal nuclear inclusions and appeared before neurological symptoms. The accumulation and aggregation of these htt fragments were associated with an age-dependent decrease in proteasome activity and were promoted by inhibition of proteasome activity. These results suggest that decreased proteasome activity contributes to late onset htt toxicity and that restoring the ability to remove NH2-terminal fragments will provide a more effective therapy for HD than inhibiting their production.
Mutant huntingtin accumulates in the neuronal nuclei and processes, which suggests that its subce... more Mutant huntingtin accumulates in the neuronal nuclei and processes, which suggests that its subcellular localization is critical for the pathology of Huntington's disease (HD). However, the contribution of cytoplasmic mutant huntingtin and its aggregates in neuronal processes (neuropil aggregates) has not been rigorously explored. We generated an intracellular antibody (intrabody) whose binding to a unique epitope of human huntingtin is enhanced by polyglutamine expansion. This intrabody decreases the cytotoxicity of mutant huntingtin and its distribution in neuronal processes. When expressed in the striatum of HD mice via adenoviral infection, the intrabody reduces neuropil aggregate formation and ameliorates neurological symptoms. Interaction of the intrabody with mutant huntingtin increases the ubiquitination of cytoplasmic huntingtin and its degradation. These findings suggest that the intrabody reduces the specific neurotoxicity of cytoplasmic mutant huntingtin and its asso...
Many genetic mouse models of Huntington’s disease (HD) have established that mutant huntingtin (h... more Many genetic mouse models of Huntington’s disease (HD) have established that mutant huntingtin (htt) accumulates in various subcellular regions to affect a variety of cellular functions, but whether and how synaptic mutant htt directly mediates HD neuropathology remains to be determined. We generated transgenic mice that selectively express mutant htt in the presynaptic terminals. Although it was not overexpressed, synaptic mutant htt caused age-dependent neurological symptoms and early death in mice as well as defects in synaptic neurotransmitter release. Mass spectrometry analysis of synaptic fractions and immunoprecipitation of synapsin-1 from HD CAG150 knockin mouse brains revealed that mutant htt binds to synapsin-1, a protein whose phosphorylation is critical for neurotransmitter release. We found that polyglutamine-expanded exon1 htt binds to the C-terminal region of synapsin-1 to reduce synapsin-1 phosphorylation. Our findings point to a critical role for synaptic htt in the...
Neurodegeneration is a hallmark of many neurological diseases, including Alzheimer's, Parkinson's... more Neurodegeneration is a hallmark of many neurological diseases, including Alzheimer's, Parkinson's and the polyglutamine diseases, which are all caused by misfolded proteins that accumulate in neuronal cells of the brain. Although apoptosis is believed to contribute to neurodegeneration in these cases, genetic mouse models of these diseases often fail to replicate apoptosis and overt neurodegeneration in the brain. Using nuclear transfer, we generated transgenic Huntington's disease (HD) pigs that express N-terminal (208 amino acids) mutant huntingtin with an expanded polyglutamine tract (105Q). Postnatal death, dyskinesia and chorea-like movement were observed in some transgenic pigs that express mutant huntingtin. Importantly, the transgenic HD pigs, unlike mice expressing the same transgene, displayed typical apoptotic neurons with DNA fragmentation in their brains. Also, expression of mutant huntingtin resulted in more neurons with activated caspase-3 in transgenic pig brains than that in transgenic mouse brains. Our findings suggest that species differences determine neuropathology and underscore the importance of large mammalian animals for modeling neurological disorders.
The neurodegenerative polyglutamine diseases are caused by an expansion of unstable polyglutamine... more The neurodegenerative polyglutamine diseases are caused by an expansion of unstable polyglutamine repeats in various disease proteins. Although these mutant proteins are expressed ubiquitously in neuronal and non-neuronal cells, they cause selective degeneration of specific neuronal populations. Recently, increasing evidence shows that polyglutamine disease proteins also affect non-neuronal cells. However, it remains unclear how the expression of polyglutamine proteins in non-neuronal cells contributes to the course of the polyglutamine diseases. Here, we discuss recent findings about the expression of mutant polyglutamine proteins in non-neuronal cells and their influence on neurological symptoms. Understanding the contribution of non-neuronal polyglutamine proteins to disease progression will help elucidate disease mechanisms and also help in the development of new treatment options.
This intrabody decreases the cytotoxicity of mutant huntingtin and its distribution in neuronal p... more This intrabody decreases the cytotoxicity of mutant huntingtin and its distribution in neuronal processes. When expressed in the striatum of HD mice via adenoviral infection, the intrabody reduces neuropil aggregate formation and ameliorates neurological symptoms. Interaction of the intrabody with mutant huntingtin increases the ubiquitination of cytoplasmic huntingtin and its degradation. These fi ndings suggest that the intrabody reduces the specifi c neurotoxicity of cytoplasmic mutant huntingtin and its associated neurological symptoms by preventing the accumulation of mutant huntingtin in neuronal processes and promoting its clearance in the cytoplasm.
Huntington's disease (HD) belongs to a family of neurodegenerative diseases caused by misfolded p... more Huntington's disease (HD) belongs to a family of neurodegenerative diseases caused by misfolded proteins and shares the pathological hallmark of selective accumulation of misfolded proteins in neuronal cells. Polyglutamine expansion in the HD protein, huntingtin (Htt), causes selective neurodegeneration that is more severe in the striatum and cortex than in other brain regions, but the mechanism behind this selectivity is unknown. Here we report that in HD knock-in mice, the expression levels of mutant Htt (mHtt) are higher in brain tissues than in peripheral tissues. However, the expression of N-terminal mHtt via stereotaxic injection of viral vectors in mice also results in greater accumulation of mHtt in the striatum than in muscle. We developed an in vitro assay that revealed that extracts from the striatum and cortex promote the formation of high-molecular weight (HMW) mHtt compared with the relatively unaffected cerebellar and peripheral tissue extracts. Inhibition of ubiquitin-activating enzyme E1 (Ube1) increased the levels of HMW mHtt in the relatively unaffected tissues. Importantly, the expression levels of Ube1 are lower in brain tissues than peripheral tissues and decline in the nuclear fraction with age, which is correlated with the increased accumulation of mHtt in the brain and neuronal nuclei during aging. Our findings suggest that decreased targeting of misfolded Htt to the proteasome for degradation via Ube1 may underlie the preferential accumulation of toxic forms of mHtt in the brain and its selective neurodegeneration.
Huntington's disease (HD) is caused by polyglutamine (polyQ) expansion in huntingtin (htt), a lar... more Huntington's disease (HD) is caused by polyglutamine (polyQ) expansion in huntingtin (htt), a large (350 kDa) protein that localizes predominantly to the cytoplasm. Proteolytic cleavage of mutant htt yields polyQ-containing N-terminal fragments that are prone to misfolding and aggregation. Disease progression in HD transgenic models correlates with age-related accumulation of soluble and aggregated forms of N-terminal mutant htt fragments, suggesting that multiple forms of mutant htt are involved in the selective neurodegeneration in HD. Although mitochondrial dysfunction is implicated in the pathogenesis of HD, it remains unclear which forms of cytoplasmic mutant htt associate with mitochondria to affect their function. Here we demonstrate that specific N-terminal mutant htt fragments associate with mitochondria in Hdh(CAG)150 knock-in mouse brain and that this association increases with age. The interaction between soluble N-terminal mutant htt and mitochondria interferes with the in vitro association of microtubule-based transport proteins with mitochondria. Mutant htt reduces the distribution and transport rate of mitochondria in the processes of cultured neuronal cells. Reduced ATP level was also found in the synaptosomal fraction isolated from Hdh(CAG)150 knock-in mouse brain. These findings suggest that specific N-terminal mutant htt fragments, before the formation of aggregates, can impair mitochondrial function directly and that this interaction may be a novel target for therapeutic strategies in HD.
Spinocerebellar ataxia 17 (SCA17) belongs to the family of neurodegenerative diseases caused by p... more Spinocerebellar ataxia 17 (SCA17) belongs to the family of neurodegenerative diseases caused by polyglutamine (polyQ) expansion. In SCA17, polyQ expansion occurs in the TATA box binding protein (TBP) and leads to the misfolding of TBP and the preferential degeneration in the cerebellar Purkinje neurons. Currently there is no effective treatment for SCA17. Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a recently identified neurotrophic factor, and increasing MANF expression ameliorated SCA17 neuropathology in TBP-105Q knock-in (KI) mouse model, indicating that MANF could be a therapeutic target for treating SCA17. In this study, we screened a collection of 2000 FDA-approved chemicals using a stable cell line expressing luciferase reporter, which is driven by MANF promoter. We identified several potential candidates that can induce the expression of MANF. Of these inducers, piperine is an agent that potently induces the luciferase expression or MANF expression. Additio...
Proceedings of the National Academy of Sciences of the United States of America, Sep 28, 2017
Although it is well known that astrocytes are less vulnerable than neurons in neurodegenerative d... more Although it is well known that astrocytes are less vulnerable than neurons in neurodegenerative diseases, the mechanism behind this differential vulnerability is unclear. Here we report that neurons and astrocytes show markedly different activities in C terminus of Hsp70-interacting protein (CHIP), a cochaperone of Hsp70. In astrocytes, CHIP is more actively monoubiquitinated and binds to mutant huntingtin (mHtt), the Huntington's disease protein, more avidly, facilitating its K48-linked polyubiquitination and degradation. Astrocytes also show the higher level and heat-shock induction of Hsp70 and faster CHIP-mediated degradation of various misfolded proteins than neurons. In contrast to astrocytes, neurons express abundant HspBP1, a CHIP inhibitory protein, resulting in the low activity of CHIP. Silencing HspBP1 expression via CRISPR-Cas9 in neurons ameliorated mHtt aggregation and neuropathology in HD knockin mouse brains. Our findings indicate a critical role of HspBP1 in dif...
The Journal of neuroscience : the official journal of the Society for Neuroscience, Jan 18, 2017
Spinocerebellar ataxia 17 (SCA17) is caused by polyglutamine (polyQ) repeat expansion in the TATA... more Spinocerebellar ataxia 17 (SCA17) is caused by polyglutamine (polyQ) repeat expansion in the TATA-binding protein (TBP) and is among a family of neurodegenerative diseases in which polyQ expansion leads to preferential neuronal loss in the brain. Although previous studies have demonstrated that expression of polyQ-expanded proteins in glial cells can cause neuronal injury via non-cell-autonomous mechanisms, these studies investigated animal models that overexpress transgenic mutant proteins. Since glial cells are particularly reactive to overexpressed mutant proteins, it is important to investigate the in vivo role of glial dysfunction in neurodegeneration when mutant polyQ proteins are endogenously expressed. In the current study, we generated two conditional TBP-105Q knock-in (KI) mouse models that specifically express mutant TBP at the endogenous level in neurons or in astrocytes. We found that mutant TBP expression in neuronal cells or astrocytes alone only caused mild neurodege...
Spinocerebellar ataxia type 17 (SCA17) is a type of autosomal dominant cerebellar ataxia (ADCA) c... more Spinocerebellar ataxia type 17 (SCA17) is a type of autosomal dominant cerebellar ataxia (ADCA) characterized by variable manifestations, including cerebellar ataxia, dementia, and psychiatric symptoms. Since the identification of a CAG repeat expansion in the TATA-box binding protein (TBP) gene in a patient with ataxia in 1999 and then verification of this expansion in patients with SCA17 in 2001, several SCA17 rodent models, including both knock-in and transgenic models in mice and rats, have been established to explore the phenotypic features and pathogenesis of SCA17. These animal models revealed different pathological changes and phenotypes that are associated with the expression of mutant TBP protein and the CAG repeat lengths. It is important to understand how mutant TBP can cause differential pathological events in SCA17 animal models. In this review, we summarize and compare these animal models for the nature of transgenes and their expression as well as phenotypical featur...
Spinocerebellar ataxia 17 (SCA17) belongs to the family of 9 genetically inherited, late-onset ne... more Spinocerebellar ataxia 17 (SCA17) belongs to the family of 9 genetically inherited, late-onset neurodegenerative diseases, which are caused by polyglutamine (polyQ) expansion in different proteins. In SCA17, the polyQ expansion occurs in the TATA box binding protein (TBP), which functions as a general transcription factor. Patients with SCA17 suffer from a broad array of motor and non-motor defects, and their life expectancy is normally within 20 y after the initial appearance of symptoms. Currently there is no effective treatment, but remarkable efforts have been devoted to tackle this devastating disorder. In this review, we will summarize our current knowledge about the molecular mechanisms underlying the pathogenesis of SCA17, with a primary focus on transcriptional dysregulations. We believe that impaired transcriptional activities caused by mutant TBP with polyQ expansion is a major form of toxicity contributing to SCA17 pathogenesis, and rectifying the altered level of downstream transcripts represents a promising therapeutic approach for the treatment of SCA17.
The Huntington's disease (HD) protein, huntingtin (HTT), is a large protein consisting of 314... more The Huntington's disease (HD) protein, huntingtin (HTT), is a large protein consisting of 3144 amino acids and has conserved N-terminal sequences that are followed by a polyglutamine (polyQ) repeat. Loss of Htt is known to cause embryonic lethality in mice, whereas polyQ expansion leads to adult neuronal degeneration. Whether N-terminal HTT is essential for neuronal development or contributes only to late-onset neurodegeneration remains unknown. We established HTT knock-in mice (N160Q-KI) expressing the first 208 amino acids of HTT with 160Q, and they show age-dependent HTT aggregates in the brain and neurological phenotypes. Importantly, the N-terminal mutant HTT also preferentially accumulates in the striatum, the brain region most affected in HD, indicating the importance of N-terminal HTT in selective neuropathology. That said, homozygous N160Q-KI mice are also embryonic lethal, suggesting that N-terminal HTT alone is unable to support embryonic development. Using Htt knocko...
In polyglutamine (polyQ) diseases, large polyQ repeats cause juvenile cases with different sympto... more In polyglutamine (polyQ) diseases, large polyQ repeats cause juvenile cases with different symptoms than adult-onset patients, who carry smaller expanded polyQ repeats. The mechanisms behind the differential pathology mediated by different polyQ repeat lengths remain unknown. By studying knock-in mouse models of spinal cerebellar ataxia-17 (SCA17), we found that a large polyQ (105 glutamines) in the TATA box-binding protein (TBP) preferentially causes muscle degeneration and reduces the expression of muscle-specific genes. Direct expression of TBP with different polyQ repeats in mouse muscle revealed that muscle degeneration is mediated only by the large polyQ repeats. Different polyQ repeats differentially alter TBP's interaction with neuronal and muscle-specific transcription factors. As a result, the large polyQ repeat decreases the association of MyoD with TBP and DNA promoters. Our findings suggest that specific alterations in protein interactions by large polyQ repeats may account for the unique pathology in juvenile polyQ diseases.
The Journal of neuroscience : the official journal of the Society for Neuroscience, Jan 18, 2014
Huntington's disease (HD) belongs to a family of neurodegenerative diseases caused by misfold... more Huntington's disease (HD) belongs to a family of neurodegenerative diseases caused by misfolded proteins and shares the pathological hallmark of selective accumulation of misfolded proteins in neuronal cells. Polyglutamine expansion in the HD protein, huntingtin (Htt), causes selective neurodegeneration that is more severe in the striatum and cortex than in other brain regions, but the mechanism behind this selectivity is unknown. Here we report that in HD knock-in mice, the expression levels of mutant Htt (mHtt) are higher in brain tissues than in peripheral tissues. However, the expression of N-terminal mHtt via stereotaxic injection of viral vectors in mice also results in greater accumulation of mHtt in the striatum than in muscle. We developed an in vitro assay that revealed that extracts from the striatum and cortex promote the formation of high-molecular weight (HMW) mHtt compared with the relatively unaffected cerebellar and peripheral tissue extracts. Inhibition of ubiq...
Huntington's disease (HD) is caused by polyglutamine (polyQ) expansion in huntingtin (htt), a... more Huntington's disease (HD) is caused by polyglutamine (polyQ) expansion in huntingtin (htt), a large (350 kDa) protein that localizes predominantly to the cytoplasm. Proteolytic cleavage of mutant htt yields polyQ-containing N-terminal fragments that are prone to misfolding and aggregation. Disease progression in HD transgenic models correlates with age-related accumulation of soluble and aggregated forms of N-terminal mutant htt fragments, suggesting that multiple forms of mutant htt are involved in the selective neurodegeneration in HD. Although mitochondrial dysfunction is implicated in the pathogenesis of HD, it remains unclear which forms of cytoplasmic mutant htt associate with mitochondria to affect their function. Here we demonstrate that specific N-terminal mutant htt fragments associate with mitochondria inHdh(CAG)150 knock-in mouse brain and that this association increases with age. The interaction between soluble N-terminal mutant htt and mitochondria interferes with ...
To elucidate the pathogenic mechanisms in Huntington's disease (HD) elicited by expression of ful... more To elucidate the pathogenic mechanisms in Huntington's disease (HD) elicited by expression of full-length human mutant huntingtin (fl-mhtt), a bacterial artificial chromosome (BAC)-mediated transgenic mouse model (BACHD) was developed expressing fl-mhtt with 97 glutamine repeats under the control of endogenous htt regulatory machinery on the BAC. BACHD mice exhibit progressive motor deficits, neuronal synaptic dysfunction, and late-onset selective neuropathology, which includes significant cortical and striatal atrophy and striatal dark neuron degeneration. Power analyses reveal the robustness of the behavioral and neuropathological phenotypes, suggesting BACHD as a suitable fl-mhtt mouse model for preclinical studies. Additional analyses of BACHD mice provide novel insights into how mhtt may elicit neuropathogenesis. First, unlike previous fl-mhtt mouse models, BACHD mice reveal that the slowly progressive and selective pathogenic process in HD mouse brains can occur without early and diffuse nuclear accumulation of aggregated mhtt (i.e., as detected by immunostaining with the EM48 antibody). Instead, a relatively steady-state level of predominantly full-length mhtt and a small amount of mhtt N-terminal fragments are sufficient to elicit the disease process. Second, the polyglutamine repeat within fl-mhtt in BACHD mice is encoded by a mixed CAA-CAG repeat, which is stable in both the germline and somatic tissues including the cortex and striatum at the onset of neuropathology. Therefore, our results suggest that somatic repeat instability does not play a necessary role in selective neuropathogenesis in BACHD mice. In summary, the BACHD model constitutes a novel and robust in vivo paradigm for the investigation of HD pathogenesis and treatment.
Huntington disease (HD) is characterized by the preferential loss of striatal medium-sized spiny ... more Huntington disease (HD) is characterized by the preferential loss of striatal medium-sized spiny neurons (MSNs) in the brain. Because MSNs receive abundant glutamatergic input, their vulnerability to excitotoxicity may be largely influenced by the capacity of glial cells to remove extracellular glutamate. However, little is known about the role of glia in HD neuropathology. Here, we report that mutant huntingtin accumulates in glial nuclei in HD brains and decreases the expression of glutamate transporters. As a result, mutant huntingtin (htt) reduces glutamate uptake in cultured astrocytes and HD mouse brains. In a neuron–glia coculture system, wild-type glial cells protected neurons against mutant htt-mediated neurotoxicity, whereas glial cells expressing mutant htt increased neuronal vulnerability. Mutant htt in cultured astrocytes decreased their protection of neurons against glutamate excitotoxicity. These findings suggest that decreased glutamate uptake caused by glial mutant ...
Although NH2-terminal mutant huntingtin (htt) fragments cause neurological disorders in Huntingto... more Although NH2-terminal mutant huntingtin (htt) fragments cause neurological disorders in Huntington's disease (HD), it is unclear how toxic htt fragments are generated and contribute to the disease process. Here, we report that complex NH2-terminal mutant htt fragments smaller than the first 508 amino acids were generated in htt-transfected cells and HD knockin mouse brains. These fragments constituted neuronal nuclear inclusions and appeared before neurological symptoms. The accumulation and aggregation of these htt fragments were associated with an age-dependent decrease in proteasome activity and were promoted by inhibition of proteasome activity. These results suggest that decreased proteasome activity contributes to late onset htt toxicity and that restoring the ability to remove NH2-terminal fragments will provide a more effective therapy for HD than inhibiting their production.
Mutant huntingtin accumulates in the neuronal nuclei and processes, which suggests that its subce... more Mutant huntingtin accumulates in the neuronal nuclei and processes, which suggests that its subcellular localization is critical for the pathology of Huntington's disease (HD). However, the contribution of cytoplasmic mutant huntingtin and its aggregates in neuronal processes (neuropil aggregates) has not been rigorously explored. We generated an intracellular antibody (intrabody) whose binding to a unique epitope of human huntingtin is enhanced by polyglutamine expansion. This intrabody decreases the cytotoxicity of mutant huntingtin and its distribution in neuronal processes. When expressed in the striatum of HD mice via adenoviral infection, the intrabody reduces neuropil aggregate formation and ameliorates neurological symptoms. Interaction of the intrabody with mutant huntingtin increases the ubiquitination of cytoplasmic huntingtin and its degradation. These findings suggest that the intrabody reduces the specific neurotoxicity of cytoplasmic mutant huntingtin and its asso...
Many genetic mouse models of Huntington’s disease (HD) have established that mutant huntingtin (h... more Many genetic mouse models of Huntington’s disease (HD) have established that mutant huntingtin (htt) accumulates in various subcellular regions to affect a variety of cellular functions, but whether and how synaptic mutant htt directly mediates HD neuropathology remains to be determined. We generated transgenic mice that selectively express mutant htt in the presynaptic terminals. Although it was not overexpressed, synaptic mutant htt caused age-dependent neurological symptoms and early death in mice as well as defects in synaptic neurotransmitter release. Mass spectrometry analysis of synaptic fractions and immunoprecipitation of synapsin-1 from HD CAG150 knockin mouse brains revealed that mutant htt binds to synapsin-1, a protein whose phosphorylation is critical for neurotransmitter release. We found that polyglutamine-expanded exon1 htt binds to the C-terminal region of synapsin-1 to reduce synapsin-1 phosphorylation. Our findings point to a critical role for synaptic htt in the...
Uploads
Papers by Shihua Li