Alfalfa, like other legumes, establishes a symbiotic relationship with the soil bacteria, Sinorhi... more Alfalfa, like other legumes, establishes a symbiotic relationship with the soil bacteria, Sinorhizobium meliloti, which results in the formation of the root nodules. Nodules contain the bacteria enclosed in a membrane-bound vesicle, the symbiosome where it fixes atmospheric N 2 and converts it into ammonia using the bacterial enzyme, nitrogenase. The ammonia released into the cytoplasm from the symbiosome is assimilated into glutamine (Gln) using carbon skeletons produced by the metabolism of sucrose (Suc), which is imported into the nodules from the leaves. The key enzyme involved in the synthesis of Suc in the leaves is sucrose phosphate synthase (SPS) and glutamine synthetase (GS) is the enzyme with a role in ammonia assimilation in the root nodules. Alfalfa plants, overexpressing SPS or GS, or both showed increased growth and an increase in nodule function. The endogenous genes for the key enzymes in C/N metabolism showed increased expression in the nodules of both sets of transformants. Furthermore, the endogenous SPS and GS genes were also induced in the leaves and nodules of the transformants, irrespective of the transgene, suggesting that the two classes of plants share a common signaling pathway regulating C/N metabolism in the nodules. This study reaffirms the utility of the nodulated legume plant to study C/N interaction and the cross talk between the source and sink for C and N.
The fungus Slafractonia leguminicola, the causal agent of blackpatch disease of legumes produces ... more The fungus Slafractonia leguminicola, the causal agent of blackpatch disease of legumes produces two mycotoxins slaframine and swainsonine, causing slobbers' symptoms and locoism of grazing animals, respectively. The genetics of this important fungus is poorly understood. This work aimed to develop a genetic transformation system and evaluate the efficacy of RNA interference (RNAi) in S. leguminicola. In this study, S. leguminicola was transformed using a PEG-mediated method with a fungal construct that carries a hygromycin resistance cassette. To assess the use of RNAi, a silencing construct pSilentPKS1-AS was constructed which includes inverted repeat transgenes of the polyketide synthase gene (pks1) that is involved in melanin biosynthesis. Transformation of S. leguminicola with the IRT pks1 vector decreased pks1 transcripts levels 82-92% in knockdown mutants when compared with the wild type and was accompanied with a reduction in melanin and swainsonine production. These results demonstrate that RNAi can be a useful tool for studying gene function in S. leguminicola.
World journal of microbiology & biotechnology, Jan 20, 2017
The fungus Slafractonia leguminicola, the causal agent of blackpatch disease of legumes produces ... more The fungus Slafractonia leguminicola, the causal agent of blackpatch disease of legumes produces two mycotoxins slaframine and swainsonine, causing slobbers' symptoms and locoism of grazing animals, respectively. The genetics of this important fungus is poorly understood. This work aimed to develop a genetic transformation system and evaluate the efficacy of RNA interference (RNAi) in S. leguminicola. In this study, S. leguminicola was transformed using a PEG-mediated method with a fungal construct that carries a hygromycin resistance cassette. To assess the use of RNAi, a silencing construct pSilentPKS1-AS was constructed which includes inverted repeat transgenes of the polyketide synthase gene (pks1) that is involved in melanin biosynthesis. Transformation of S. leguminicola with the IRT pks1 vector decreased pks1 transcripts levels 82-92% in knockdown mutants when compared with the wild type and was accompanied with a reduction in melanin and swainsonine production. These res...
Alfalfa, like other legumes, establishes a symbiotic relationship with the soil bacteria, Sinorhi... more Alfalfa, like other legumes, establishes a symbiotic relationship with the soil bacteria, Sinorhizobium meliloti, which results in the formation of the root nodules. Nodules contain the bacteria enclosed in a membrane-bound vesicle, the symbiosome where it fixes atmospheric N 2 and converts it into ammonia using the bacterial enzyme, nitrogenase. The ammonia released into the cytoplasm from the symbiosome is assimilated into glutamine (Gln) using carbon skeletons produced by the metabolism of sucrose (Suc), which is imported into the nodules from the leaves. The key enzyme involved in the synthesis of Suc in the leaves is sucrose phosphate synthase (SPS) and glutamine synthetase (GS) is the enzyme with a role in ammonia assimilation in the root nodules. Alfalfa plants, overexpressing SPS or GS, or both showed increased growth and an increase in nodule function. The endogenous genes for the key enzymes in C/N metabolism showed increased expression in the nodules of both sets of transformants. Furthermore, the endogenous SPS and GS genes were also induced in the leaves and nodules of the transformants, irrespective of the transgene, suggesting that the two classes of plants share a common signaling pathway regulating C/N metabolism in the nodules. This study reaffirms the utility of the nodulated legume plant to study C/N interaction and the cross talk between the source and sink for C and N.
The fungus Slafractonia leguminicola, the causal agent of blackpatch disease of legumes produces ... more The fungus Slafractonia leguminicola, the causal agent of blackpatch disease of legumes produces two mycotoxins slaframine and swainsonine, causing slobbers' symptoms and locoism of grazing animals, respectively. The genetics of this important fungus is poorly understood. This work aimed to develop a genetic transformation system and evaluate the efficacy of RNA interference (RNAi) in S. leguminicola. In this study, S. leguminicola was transformed using a PEG-mediated method with a fungal construct that carries a hygromycin resistance cassette. To assess the use of RNAi, a silencing construct pSilentPKS1-AS was constructed which includes inverted repeat transgenes of the polyketide synthase gene (pks1) that is involved in melanin biosynthesis. Transformation of S. leguminicola with the IRT pks1 vector decreased pks1 transcripts levels 82-92% in knockdown mutants when compared with the wild type and was accompanied with a reduction in melanin and swainsonine production. These results demonstrate that RNAi can be a useful tool for studying gene function in S. leguminicola.
World journal of microbiology & biotechnology, Jan 20, 2017
The fungus Slafractonia leguminicola, the causal agent of blackpatch disease of legumes produces ... more The fungus Slafractonia leguminicola, the causal agent of blackpatch disease of legumes produces two mycotoxins slaframine and swainsonine, causing slobbers' symptoms and locoism of grazing animals, respectively. The genetics of this important fungus is poorly understood. This work aimed to develop a genetic transformation system and evaluate the efficacy of RNA interference (RNAi) in S. leguminicola. In this study, S. leguminicola was transformed using a PEG-mediated method with a fungal construct that carries a hygromycin resistance cassette. To assess the use of RNAi, a silencing construct pSilentPKS1-AS was constructed which includes inverted repeat transgenes of the polyketide synthase gene (pks1) that is involved in melanin biosynthesis. Transformation of S. leguminicola with the IRT pks1 vector decreased pks1 transcripts levels 82-92% in knockdown mutants when compared with the wild type and was accompanied with a reduction in melanin and swainsonine production. These res...
Uploads
Papers by Sayed Gebril