Papers by Roberto Chiocchetti
The enteric nervous system (ENS) plays a key role in sheep scrapie, but no information exists on ... more The enteric nervous system (ENS) plays a key role in sheep scrapie, but no information exists on the cytotypes which are involved during infection, nor on the damage of such cells. We investigated the ileal myenteric (MPs) and submucosal plexuses (SMPs) of 32 Sarda breed sheep carrying different PrP genotypes (ARQ/ARQ, ARQ/AHQ, ARQ/ARR, ARR/ARR), which had been orally dosed with scrapie at 8 months of age and euthanized at definite time intervals post-infection (p.i.). PrPSc immunoreactivity (IR), along with neuronal marker Hu C/D, nitric oxide synthase (nNOS), calbindin (CALB), glial fibrillary acidic protein (GFAP) and synaptophysin IR, were evaluated by immunohistochemistry (IHC) and indirect immunofluorescence on paraffin sections and wholemount preparations. Eight clinically-healthy ARQ/ARQ sheep euthanized at 12-24 months p.i., along with 1 ARQ/ARQ (euthanized at 24 months p.i.) and 3 ARQ/AHQ (euthanized at 35, 36.3 and 39.5 months p.i., respectively) clinically-affected sheep...
The Anatomical record, 1999
The fluorescent retrograde double labeling technique has been used to identify within the extraoc... more The fluorescent retrograde double labeling technique has been used to identify within the extraocular motor nuclei of the sheep the neurons projecting to the cerebellum and to provide evidence whether they are motor neurons sending collaterals to the cerebellum or a separate population of neurons. The study was performed on eight sheep. The fluorescent tracers used were Fast Blue and the diamidino yellow dihydrochloride. In one and the same animal a fluorescent tracer was injected into the extraocular muscles (EOMs) and the other into bilateral points of the vermal folia II-V and paramedian lobule, or into the vermal folia VI, VIIA and VIIB, or into the underlying fastigial nuclei. Within the oculomotor, trochlear, and abducens nuclei, almost all of the motor neurons were labeled by the tracer injected into the EOMs and only a few cells were fluorescent for the tracer infiltrated into the cerebellum. These latter labelings were present bilaterally, and their number and distribution ...
The Anatomical record, 1998
The double fluorescent retrograde tracing technique was used to identify, within the coeruleus co... more The double fluorescent retrograde tracing technique was used to identify, within the coeruleus complex (Co complex) of the duck, the nerve cells projecting to the cerebellar cortex and to the spinal cord. This technique was also used to investigate the possibility that the cerebellar and spinal projections of the Co complex are collaterals of the same axons. In the same animal, nuclear Diamidino yellow dihydrochloride (DY) fluorescent tracer was placed into the cerebellar cortex of folia V-VII, and cytoplasmic fluorescent Fast blue (FB) dye was injected into C3-C4 spinal cord segments. FB labeled multipolar somata and DY fluorescent nuclei were intermingled within the dorsal caudal region of the locus coeruleus (LCo) and within the dorsal division of the nucleus subcoeruleus (dSCo). Moreover, in the LCo, a low proportion of double-labeled neurons (about 3-4% of labelings) was evidenced among single-labeled neurons. In the ventral division of the nucleus subcoeruleus (vSCo), occasion...
Veterinary Research Communications, 2000
PLoS ONE, 2014
The English spotting coat color locus in rabbits, also known as Dominant white spotting locus, is... more The English spotting coat color locus in rabbits, also known as Dominant white spotting locus, is determined by an incompletely dominant allele (En). Rabbits homozygous for the recessive wild-type allele (en/en) are self-colored, heterozygous En/en rabbits are normally spotted, and homozygous En/En animals are almost completely white. Compared to vital en/en and En/en rabbits, En/En animals are subvital because of a dilated ("mega") cecum and ascending colon. In this study, we investigated the role of the KIT gene as a candidate for the English spotting locus in Checkered Giant rabbits and characterized the abnormalities affecting enteric neurons and c-kit positive interstitial cells of Cajal (ICC) in the megacolon of En/En rabbits. Twenty-one litters were obtained by crossing three Checkered Giant bucks (En/en) with nine Checkered Giant (En/en) and two en/en does, producing a total of 138 F1 and backcrossed rabbits. Resequencing all coding exons and portions of non-coding regions of the KIT gene in 28 rabbits of different breeds identified 98 polymorphisms. A single nucleotide polymorphism genotyped in all F1 families showed complete cosegregation with the English spotting coat color phenotype (θ=0.00 LOD =75.56). KIT gene expression in cecum and colon specimens of En/En (pathological) rabbits was 5-10% of that of en/en (control) rabbits. En/En rabbits showed reduced and altered c-kit immunolabelled ICC compared to en/en controls. Morphometric data on whole mounts of the ascending colon showed a significant decrease of HuC/D (P<0.05) and substance P (P<0.01) immunoreactive neurons in En/En vs. en/en. Electron microscopy analysis showed neuronal and ICC abnormalities in En/En tissues. The En/En rabbit model shows neuro-ICC changes reminiscent of the human non-aganglionic megacolon. This rabbit model may provide a better understanding of the molecular abnormalities underlying conditions associated with non-aganglionic megacolon.
Neuroscience, 2009
Palatine tonsils (PTs), together with ileal Peyer's patches, rank among the first coloniz... more Palatine tonsils (PTs), together with ileal Peyer's patches, rank among the first colonization sites for infectious prions. After replicating in these lymphoid tissues, prions undertake the process of "neuroinvasion," which is likely mediated by the peripheral nerves connecting lymphoid tissues to the central nervous system (CNS). To study the connections between the tonsils and the CNS, we injected fluorescent tracers into the PTs of lambs; the highest number of Fast Blue (FB)-labeled neurons was found in cranial cervical ganglia (CCG), whereas a progressively decreasing number of cells were detected in proximal glossopharyngeal, proximal vagal, trigeminal, pterygopalatine, and cervicothoracic ganglia. Immunohistochemistry was carried out on tonsil and ganglia cryosections. Immunoreactivity (IR) for tyrosine hydroxylase (TH), dopamine beta-hydroxylase (DBH), neuronal nitric oxide synthase (nNOS), calcitonin gene-related peptide (CGRP), substance P (SP), and calcium-binding protein S100 (S100), was observed in the fibers around and within PT lymphoid nodules. In the trigeminal, proximal glossopharyngeal and vagal ganglia the retrogradely-labeled neurons showed nNOS-, SP- and CGRP-IR. In all ganglia some retrogradely-labeled neurons showed nNOS-, SP- and CGRP-IR co-localization. It is worth noting that only 66+/-19% and 75+/-13% of retrogradely-labeled neurons in CCG showed TH- and DBH-IR, respectively. The present results allow us to attribute PT innervation mainly to the sympathetic component and to the glossopharyngeal, vagal and trigeminal cranial nerves. Furthermore, these data also provide a plausible anatomic route through which infectious agents, such as prions, may access the CNS, i.e. by traveling along several cranial and sympathetic nerves, as well as by migration via glial cells.
Journal of Cutaneous Pathology, 2009
Proteinase-activated receptor-2 (PAR-2) is a transmembrane G-protein expressed in many normal tis... more Proteinase-activated receptor-2 (PAR-2) is a transmembrane G-protein expressed in many normal tissues and overexpressed in several cancer cell lines. It contributes to metastasis, promotes epidermal growth factor receptor proliferation, angiogenesis and tumor progression in many carcinomas. The purpose of this study was to investigate the expression of PAR-2 in basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) in comparison with that of normal skin. Immunohistochemical (IHC) expression of PAR-2 was examined using paraffin-embedded sections from 30 BCCs, 30 SCCs and also 30 normal sun-exposed skin specimens. PAR-2 was expressed in all specimens of SCC and normal skin. In marked contrast, all BCC specimens had negative IHC staining. Given the important role of PAR-2 in angiogenesis and metastasis, our finding can explain the far less aggressive behavior of BCC as compared with SCC.
Journal of Chemical Neuroanatomy, 2008
To better understand the local neuronal network of the gastro-duodenal junction in ruminants, we ... more To better understand the local neuronal network of the gastro-duodenal junction in ruminants, we identified the components of the enteric nervous system (ENS) innervating the pyloric sphincter (PS) of the lamb abomasum. The neurons were labelled after injecting the tracer Fast Blue (FB) into the wall of the PS, and the phenotype of the FB-labelled neurons was immunohistochemically investigated using antibodies against nitric oxide synthase (NOS), choline acetyltransferase (ChAT), tachykinin (substance P) and tyrosine hydroxylase (TH). The FB-labelled abomasal myenteric plexus (MP) neurons, observed up to 14cm from the PS, were NOS-immunoreactive (IR) (82+/-12%), ChAT-IR (51+/-29%), SP-IR (61+/-33%), and also TH-IR (2%). The descending nitrergic neurons were also SP-IR (64%) and ChAT-IR (21%); the cholinergic descending neurons were SP-IR (3%). The FB-labelled duodenal neurons were located only in the MP, up to 8cm from the sphincter and were ChAT-IR (79+/-16%), SP-IR (32+/-18%), NOS-IR (from 0 to 2%), and also TH-IR (4+/-3%). The cholinergic ascending neurons were also SP-IR (60%) whereas no ChAT-IR cells were NOS-IR. The findings of this research indicate that the sheep PS is innervated by long-projecting neurons of the abomasal and duodenal ENS.
Cell and Tissue Research, 2004
We have identified the enteric neuron types expressing immunoreactivity for the calcium-binding p... more We have identified the enteric neuron types expressing immunoreactivity for the calcium-binding protein calbindin D28k (CALB) in cryostat sections and whole-mount preparations of myenteric (MP) and submucosal (SMP) plexuses of sheep ileum. We wished to determine whether CALB-IR in the sheep enteric nervous system was expressed in Dogiel type II cells, as in guineapig and rat ileum, and could therefore be used as a marker for intrinsic primary afferent neurons. The neurochemical coding of CALB-containing myenteric and submucosal neurons in ileum of unweaned lamb and mature sheep and its co-localisation with various neural markers was studied immunohistochemically. An antiserum against neuronal nuclear protein (NeuN) failed to detect the entire neuronal population; it was expressed only in 48% of neuronspecific enolase (NSE)-immunoreactive (NSE-IR) neurons. Human neuronal protein appeared to occur in the large majority or all neurons. Almost all CALB-IR neurons were: (1) radially multidendritic; (2) eccentric multidendritic; (3) Dogiel type II. CALB-IR occurred in 20-25% of myenteric and 65-75% of submucosal neurons in lamb and mature sheep, with higher values in mature sheep. Nearly all CALB-IR neurons were common choline acetyltransferase (cChAT)-IR, whereas only about 20% of cChAT-IR somata were CALB-IR. In lamb and mature sheep, 90% of MP CALB-IR neurons were peripheral choline acetyltransferase (pChAT)-IR. In lamb SMP, 80 ±13% of CALB-IR cells were also pChAT-IR, whereas all those in mature SMP were pChAT-IR. Fewer myenteric CALB-IR neurons exhibited tachykinin (TK) in mature sheep (49%) than in lamb (88%). This was also the case for submucosal ganglia (mature sheep, 63%; lamb, 89%). In lamb MP, 77±7% of CALB-IR cells were NeuNpositive. In mature sheep, 73±10% of CALB-IR somata were NeuN-IR, but NeuN failed to stain SMP neurons. In the MP of suckling and mature sheep, Dogiel type II CALB-IR neurons were calcitonin gene-related peptide (CGRP)-IR. In the SMP at both stages, Dogiel type II CALB-IR somata (about 50% of CALB-IR neurons) were also CGRP-IR. Only small proportions of CALB-IR neurons showed immunoreactivity for calretinin or nitric oxide synthase (NOS), although large populations of CALB and NOS neurons occurred in the ganglia. Thus, CALB is a marker of most Dogiel type II neurons in the sheep but is not confined to Dogiel II neurons. CGRP is a more selective marker of Dogiel type II neurons, being only found in this neuron type.
Cell and Tissue Research, 2008
We have examined the innervation of the gut-associated lymphoid system of the sheep ileum, with a... more We have examined the innervation of the gut-associated lymphoid system of the sheep ileum, with a view to identifying potential sites for neuroinvasion by pathogens, such as prions (PrP(Sc)). Special attention has been paid to the follicles of Peyer's patches (PPs), which are major sites of PrP(Sc) accumulation during infection. Evidence exists that the enteric nervous system, together with the parasympathetic and sympathetic pathways projecting to the intestine, are important for PrP(Sc) entry into the central nervous system. Thus, PrP(Sc) might move from PPs to the neurons and nerve fibres that innervate them. We investigated, by immunohistochemistry and retrograde tracing (DiI) from the follicles, the distribution and phenotype of enteric neurons innervating the follicles. Antibodies against protein gene product 9.5, tyrosine hydroxylase, dopamine beta hydroxylase, choline acetyltransferase, calbindin (CALB), calcitonin gene-related peptide (CGRP), and nitric oxide synthase were used to characterise the neurons. Immunoreactivity for each of these was observed in fibres around and inside PP follicles. CGRP-immunoreactive fibres were mainly seen at the follicular dome. Retrograde tracing revealed submucosal neurons that contributed to the innervation of PPs, including Dogiel type II neurons and neurons immunoreactive for CALB and CGRP. The major source of the adrenergic fibres are the sympathetic ganglia. Our results thus suggest that enteric and sympathetic neurons are involved during the first stage of neuroinvasion, with neurons connecting to them acting as potential carriers of PrP(Sc) to the central nervous system.
Cell and Tissue Research, 2003
Cholinergic neurons have been revealed in the enteric nervous system by functional and biochemica... more Cholinergic neurons have been revealed in the enteric nervous system by functional and biochemical studies but not by antibodies that provide excellent localisation of the synthesising enzyme, choline acetyltransferase (ChAT), in the central nervous system. In order to determine whether a newly described peripheral form of ChAT (pChAT) is a ChAT enzyme of enteric neurons, we have compared pChAT distribution with that of the common form of ChAT, cChAT, by quantitative analysis of the co-localisation of pChAT and cChAT with other neurochemical markers in enteric neurons of the guinea-pig ileum. We found classes of neuron with strong pChAT immunoreactivity (IR) and others with strong cChAT-IR. In myenteric ganglia, strong pChAT-IR was in calbindinpositive intrinsic primary afferent neurons (IPANs), whereas cChAT-IR of these neurons was weak. Calretinin neurons were immunoreactive for cChAT, but not pChAT. Only 4% of nitric oxide synthase (NOS) neurons (possibly interneurons) were pChAT-immunoreactive, similar to observations with cChAT. NOS-immunoreactive inhibitory motor neurons stained with neither cChAT nor pChAT antisera. In the submucosal ganglia, pChAT-IR was strongly expressed in IPANs (identified by cytoplasmic staining for the neuronal nuclear marker, NeuN) and in neuropeptide Y (NPY)-immunoreactive secretomotor neurons, but not in calretinin-immunoreactive neurons. cChAT-IR occurred weakly in submucosal IPANs and also labelled NPY-and calretinin-immunoreactive neurons. Submucosal vasoactive-intestinal-peptide-immunoreactive neurons (non-cholinergic secretomotor neurons) were not reactive for either form of ChAT.
Cell and Tissue Research, 2006
To investigate extrinsic origins of calcitonin gene-related peptide immunoreactive (CGRP-IR) nerv... more To investigate extrinsic origins of calcitonin gene-related peptide immunoreactive (CGRP-IR) nerve fibres in the sheep ileum, the retrograde fluorescent tracer Fast Blue (FB) was injected into the ileum wall. Sections of thoraco-lumbar dorsal root ganglia (DRG) and distal (nodose) vagal ganglia showing FB-labelled neurons were processed for CGRP immunohistochemistry. The distribution of CGRP-IR in fibres and nerve cell bodies in the ileum was also studied. CGRP-IR enteric neurons were morphometrically analysed in myenteric (MP) and submucosal plexuses (SMP) of lambs (2-4 months). Sensory neurons retrogradely labelled with FB were scattered in T5-L4 DRG but most were located at the upper lumbar levels (L1-L3); only a minor component of the extrinsic afferent innervation of the ileum was derived from nodose ganglia. In the DRG, 57% of retrogradely labelled neurons were also CGRP-IR. In cryostat sections, a dense network of CGRP-IR fibres was observed in the lamina propria beneath the epithelium, around the lacteals and lymphatic follicles (Peyer's platches), and along and around enteric blood vessels. Rare CGRP-IR fibres were also present in both muscle layers. Dense pericellular baskets of CGRP-IR fibres were observed around CGRP-negative somata. The only CGRP-IR nerve cells were well-defined Dogiel type II neurons localised in the MP and in the external and internal components of the SMP. CGRP-IR neurons in the myenteric ganglia were significantly larger than those in the submucosal ganglia (mean profile areas: about 1,400 μm 2 for myenteric neurons, 750 μm 2 for submucosal neurons). About 6% of myenteric neurons and 25% of submucosal neurons were CGRP-IR Dogiel type II neurons. The percentages of CGRP-IR neurons that were also tachykinin-IR were about 9% (MP) and 42% (SMP), whereas no CGRP-IR neurons exhibited immunoreactivity for vasoactive intestinal peptide, nitric oxide synthase or tyrosine hydroxylase in either plexus. Thus, CGRP immunoreactivity occurs in the enteric nervous system of the sheep ileum (as in human small intestine and MP of pig ileum) in only one morphologically defined type of neuron, Dogiel type II cells. These are probably intrinsic primary afferent neurons.
Anatomy and Embryology, 2006
This study describes calbindin-D28k (CB), neuronal nitric oxide synthase (nNOS), and nicotinamide... more This study describes calbindin-D28k (CB), neuronal nitric oxide synthase (nNOS), and nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) expression in the lateral nucleus of the sheep amygdaloid complex. Double immunofluorescence protocol was used in order to determine whether there is colocalization of CB and nNOS. The CB-immunoreactive (IR) neuronal population was composed especially of non-pyramidal neurons, but a few pyramidal cells were also present. The non-pyramidal neurons showed a multipolar and, occasionally, a fusiform morphology. The comparison between single-labeled CB-IR non-pyramidal neurons and cells belonging to CB-IR neuronal population showed they were identical for morphology, mean size, and distribution. The single-labeled CB-IR non-pyramidal neurons were only the 17.8% of the total non-pyramidal neurons counted. The nNOS-IR neuronal population was represented by non-pyramidal multipolar and fusiform neurons. Single-labeled nNOS-IR non-pyramidal neurons had the same morphology, mean area, and distribution as cells belonging to nNOS-IR neuronal population. Single-labeled nNOS-IR non-pyramidal neurons were more numerous than single-labeled CB-IR, and represented the 73.7% of total non-pyramidal neurons counted. NADPH-d-positive cells had the same morphology and distribution as the nNOS-IR neurons. Double immunolabeling (CB/nNOS) was found mostly in non-pyramidal multipolar neurons and only in a few non-pyramidal fusiform cells. These neurons had a mean perikaryal area significantly higher and significantly smaller than that of single-labeled nNOS and single-labeled CB-IR non-pyramidal neurons, respectively. CB and nNOS coexist only in a minority of non-pyramidal neurons (8.5%). The 32.4% of all CB-IR non-pyramidal neurons were nNOS-positive; only 10.4% of nNOS-IR non-pyramidal neurons were CB-positive. These results indicate that CB and nNOS are expressed by selective neurons and that the majority of nNOS-IR non-pyramidal neurons are lacking in CB.
The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, 2007
The specific patterns of gastrointestinal motility in large herbivores may relate to differences ... more The specific patterns of gastrointestinal motility in large herbivores may relate to differences in the organization of enteric nerve circuits, compared with other mammals. To investigate this possibility, we characterized the morphologies, chemical phenotypes, and projections of myenteric plexus (MP) neurons of the sheep ileum. Morphologies and projections were investigated after application of the carbocyanine dye (1,1 0 , di-octadecyl-3,3,3 0 ,3 0 ,-tetramethylindo-carbocyanine perchlorate, DiI) to fixed tissues. To study chemical phenotypes, the fluorescent tracer Fast Blue (FB) was injected into the wall of the ileum, in vivo, 12-14 cm oral to the ileo-caecal junction. Over 80% of the descending and ascending DiI-labeled neurons had typical Dogiel type I morphology, whereas only a few Dogiel type II neurons were observed. Nevertheless, there were long projections (up to 10 cm) of Dogiel type II neurons in both directions. Both type II and type I neurons were neurofilament immunoreactive (IR). We observed long projections of descending (up to 18 cm) and ascending (up to 12-14 cm) FB-labeled MP neurons. Nitric oxide synthase (NOS)-IR, peripheral choline acetyltransferase (pChAT)-IR, and substance P (SP)-IR occurred in both descending and ascending myenteric neurons. NOS-IR was in approximately 60% of FB-labeled descending and ascending neurons, whereas those expressing pChAT-IR were 67 6 15% and 60 6 14%, respectively. Descending neurons expressing SP-IR were 48 6 15% and ascending were 56 6 12%. NOS-IR and pChAT-IR, and SP-IR and pChAT-IR were commonly colocalized in both ascending and descending pathways. In descending pathways, almost all SP-IR neurons were also pChAT-IR (98 6 3%) and NOS-IR (99 6 2 NOS 1 /SP 1 /pChAT 2 ). Many FB-labeled descending neurons showed both NOS-and pChAT-IR. Descending neurons may represent inhibitory motor neurons (NOS 1 /SP 1 /pChAT 2 ) and two classes of interneurons (pChAT 1 /NOS 2 , and pChAT 1 /NOS
American Journal of Veterinary Research, 2006
Objective-To analyze the morphology, cytoarchitecture, and lumbosacral spinal cord projections of... more Objective-To analyze the morphology, cytoarchitecture, and lumbosacral spinal cord projections of the red nucleus (RN) in cattle. Animals-8 healthy Friesian male calves. Procedures-Anesthetized calves underwent a dorsal laminectomy at L5. Eight bilateral injections (lateral to the midline) of the neuronal retrograde fluorescent tracer fast blue (FB) were administered into the exposed lumbosacral portion of the spinal cord. A postsurgical calf survival time of 38 to 55 days was used. Following euthanasia, the midbrain and the L5-S2 spinal cord segments were removed. Nissl's method of staining was applied on paraffin-embedded and frozen sections of the midbrain. Results-The mean length of the RN from the caudal to cranial end ranged from 6,680 to 8,640 μm. The magnocellular and parvicellular components of the RN were intermixed throughout the nucleus, but the former predominate at the caudal portion of the nucleus and the latter at the cranial portion with a gradual transitional zone. The FB-labeled neurons were found along the entire craniocaudal extension of the nucleus, mainly in its ventrolateral part. The number of FB-labeled neurons was determined in 4 calves, ranging from 191 to 1,469 (mean, 465). The mean cross-sectional area of the FB-labeled neurons was approximately 1,680 μm 2 . Conclusions and Clinical Relevance-In cattle, small, medium, and large RN neurons, located along the entire craniocaudal extension of the RN, contribute to the rubrospinal tract reaching the L6-S1 spinal cord segments. Thus, in cattle, as has been shown in cats, the RN parvicellular population also projects to the spinal cord. Am J Vet Res 2006;67:1662-1669) ABBREVIATIONS RN Red nucleus RNm RN magnocellular region RNp RN parvicellular region LVN Lateral vestibular nucleus BSP Bovine spastic paresis FB Fast blue
American Journal of Veterinary Research, 2005
Objective⎯To determine the location, morphology, and neurochemical code of spinal cord and dorsal... more Objective⎯To determine the location, morphology, and neurochemical code of spinal cord and dorsal root ganglion neurons that innervate the gastrocnemius muscle (GM) and superficial digital flexor muscle (FDSM) in cattle. Animals⎯5 healthy Friesian male calves. Procedure⎯2 different types of neuronal retrograde fluorescent tracers (fast blue and diamidino yellow) were injected into the GM and FDSM, respectively. The neurochemical code (substance P, calcitonin gene-related peptide, galanin, and neuronal nuclear protein) of labeled neurons was investigated by immunohistochemistry.
Journal of Anatomy, 2014
European eels live most of their lives in freshwater until spawning migration to the Sargasso Sea... more European eels live most of their lives in freshwater until spawning migration to the Sargasso Sea. During seawater adaptation, eels modify their physiology, and their digestive system adapts to the new environment, drinking salt water to compensate for the continuous water loss. In that period, eels stop feeding until spawning. Thus, the eel represents a unique model to understand the adaptive changes of the enteric nervous system (ENS) to modified salinity and starvation. To this purpose, we assessed and compared the enteric neuronal density in the cranial portion of the intestine of freshwater eels (control), lagoon eels captured in brackish water before their migration to the Sargasso Sea (T0), and starved seawater eels hormonally induced to sexual maturity (T18; 18 weeks of starvation and treatment with standardized carp pituitary extract). Furthermore, we analyzed the modification of intestinal neuronal density of hormonally untreated eels during prolonged starvation (10 weeks) in seawater and freshwater. The density of myenteric (MP) and submucosal plexus (SMP) HuC/D-immunoreactive (Hu-IR) neurons was assessed in wholemount preparations and cryosections. The number of MP and SMP HuC/D-IR neurons progressively increased from the freshwater to the salty water habitat (control > T0 > T18; P < 0.05). Compared with freshwater eels, the number of MP and SMP HuC/D-IR neurons significantly increased (P < 0.05) in the intestine of starved untreated salt water eels. In conclusion, high salinity evokes enteric neuroplasticity as indicated by the increasing number of HuC/D-IR MP and SMP neurons, a mechanism likely contributing to maintaining the body homeostasis of this fish in extreme conditions.
Uploads
Papers by Roberto Chiocchetti