Papers by Regev Schweiger
Bioinformatics, Jul 12, 2017
Motivation: Epigenome-wide association studies can provide novel insights into the regulation of ... more Motivation: Epigenome-wide association studies can provide novel insights into the regulation of genes involved in traits and diseases. The rapid emergence of bisulfite-sequencing technologies enables performing such genome-wide studies at the resolution of single nucleotides. However, analysis of data produced by bisulfite-sequencing poses statistical challenges owing to low and uneven sequencing depth, as well as the presence of confounding factors. The recently introduced Mixed model Association for Count data via data AUgmentation (MACAU) can address these challenges via a generalized linear mixed model when confounding can be encoded via a single variance component. However, MACAU cannot be used in the presence of multiple variance components. Additionally, MACAU uses a computationally expensive Markov Chain Monte Carlo (MCMC) procedure, which cannot directly approximate the model likelihood. Results: We present a new method, Mixed model Association via a Laplace ApproXimation (MALAX), that is more computationally efficient than MACAU and allows to model multiple variance components. MALAX uses a Laplace approximation rather than MCMC based approximations, which enables to directly approximate the model likelihood. Through an extensive analysis of simulated and real data, we demonstrate that MALAX successfully addresses statistical challenges introduced by bisulfite-sequencing while controlling for complex sources of confounding, and can be over 50% faster than the state of the art.
Genome Research, Aug 10, 2023
The pairwise sequentially Markovian coalescent (PSMC) algorithm and its extensions infer the coal... more The pairwise sequentially Markovian coalescent (PSMC) algorithm and its extensions infer the coalescence time of two homologous chromosomes at each genomic position. This inference is used in reconstructing demographic histories, detecting selection signatures, studying genome-wide associations, constructing ancestral recombination graphs, and more. Inference of coalescence times between each pair of haplotypes in a large data set is of great interest, as they may provide rich information about the population structure and history of the sample. Here, we introduce a new method, Gamma-SMC, which is more than 10 times faster than current methods. To obtain this speed-up, we represent the posterior coalescence time distributions succinctly as a gamma distribution with just two parameters; in contrast, PSMC and its extensions hold these in a vector over discrete intervals of time. Thus, Gamma-SMC has constant time-complexity per site, without dependence on the number of discrete time states. Additionally, because of this continuous representation, our method is able to infer times spanning many orders of magnitude and, as such, is robust to parameter misspecification. We describe how this approach works, show its performance on simulated and real data, and illustrate its use in studying recent positive selection in the 1000 Genomes Project data set.
Journal of Computational Biology, Jul 1, 2018
Estimation of heritability is an important task in genetics. The use of linear mixed models (LMMs... more Estimation of heritability is an important task in genetics. The use of linear mixed models (LMMs) to determine narrow-sense SNP-heritability and related quantities has received much recent attention, due of its ability to account for variants with small effect sizes. Typically, heritability estimation under LMMs uses the restricted maximum likelihood (REML) approach. The common way to report the uncertainty in REML estimation uses standard errors (SE), which rely on asymptotic properties. However, these assumptions are often violated because of the bounded parameter space, statistical dependencies, and limited sample size, leading to biased estimates and inflated or deflated confidence intervals. In addition, for larger datasets (e.g., tens of thousands of individuals), the construction of SEs itself may require considerable time, as it requires expensive matrix inversions and multiplications. Here, we present FIESTA (Fast confidence IntErvals using STochastic Approximation), a method for constructing accurate confidence intervals (CIs). FIESTA is based on parametric bootstrap sampling, and therefore avoids unjustified assumptions on the distribution of the heritability estimator. FIESTA uses stochastic approximation techniques, which accelerate the construction of CIs by several orders of magnitude, compared to previous approaches as well as to the analytical approximation used by SEs. FIESTA builds accurate CIs rapidly, e.g., requiring only several seconds for datasets of tend of thousands of individuals, making FIESTA a very fast solution to the problem of building accurate CIs for heritability for all dataset sizes.
Genome Biology, Sep 21, 2018
We introduce a Bayesian semi-supervised method for estimating cell counts from DNA methylation by... more We introduce a Bayesian semi-supervised method for estimating cell counts from DNA methylation by leveraging an easily obtainable prior knowledge on the cell-type composition distribution of the studied tissue. We show mathematically and empirically that alternative methods which attempt to infer cell counts without methylation reference only capture linear combinations of cell counts rather than provide one component per cell type. Our approach allows the construction of components such that each component corresponds to a single cell type, and provides a new opportunity to investigate cell compositions in genomic studies of tissues for which it was not possible before.
Bioinformatics, Feb 8, 2017
GLINT is a user-friendly command-line toolset for fast analysis of genome-wide DNA methylation da... more GLINT is a user-friendly command-line toolset for fast analysis of genome-wide DNA methylation data generated using the Illumina human methylation arrays. GLINT, which does not require any programming proficiency, allows an easy execution of Epigenome-Wide Association Study analysis pipeline under different models while accounting for known confounders in methylation data. Availability and Implementation: GLINT is a command-line software, freely available at https:// github.com/cozygene/glint/releases. It requires Python 2.7 and several freely available Python packages. Further information and documentation as well as a quick start tutorial are available at http:// glint-epigenetics.readthedocs.io.
bioRxiv (Cold Spring Harbor Laboratory), Jun 3, 2017
Testing for the existence of variance components in linear mixed models is a fundamental task in ... more Testing for the existence of variance components in linear mixed models is a fundamental task in many applicative fields. In statistical genetics, the score test has recently become instrumental in the task of testing an association between a set of genetic markers and a phenotype. With few markers, this amounts to set-based variance component tests, which attempt to increase power in association studies by aggregating weak individual effects. When the entire genome is considered, it allows testing for the heritability of a phenotype, defined as the proportion of phenotypic variance explained by genetics. In the popular score-based Sequence Kernel Association Test (SKAT) method, the assumed distribution of the score test statistic is uncalibrated in small samples, with a correction being computationally expensive. This may cause severe inflation or deflation of p-values, even when the null hypothesis is true. Here, we characterize the conditions under which this discrepancy holds, and show it may occur also in large real datasets, such as a dataset from the Wellcome Trust Case Control Consortium 2 (n=13,950) study, and in particular when the individuals in the sample are unrelated. In these cases the SKAT approximation tends to be highly over-conservative and therefore underpowered. To address this limitation, we suggest an efficient method to calculate exact p-values for the score test in the case of a single variance component and a continuous response vector, which can speed up the analysis by orders of magnitude. Our results enable fast and accurate application of the score test in heritability and in set-based association tests. Our method is available in http://github.com/cozygene/RL-SKAT. .
Nature Communications, Nov 21, 2018
Testing for association between a set of genetic markers and a phenotype is a fundamental task in... more Testing for association between a set of genetic markers and a phenotype is a fundamental task in genetic studies. Standard approaches for heritability and set testing strongly rely on parametric models that make specific assumptions regarding phenotypic variability. Here, we show that resulting p-values may be inflated by up to 15 orders of magnitude, in a heritability study of methylation measurements, and in a heritability and expression quantitative trait loci analysis of gene expression profiles. We propose FEATHER, a method for fast permutationbased testing of marker sets and of heritability, which properly controls for false-positive results. FEATHER eliminated 47% of methylation sites found to be heritable by the parametric test, suggesting a substantial inflation of false-positive findings by alternative methods. Our approach can rapidly identify heritable phenotypes out of millions of phenotypes acquired via high-throughput technologies, does not suffer from model misspecification and is highly efficient.
We introduce a Bayesian semi-supervised method for estimating cell counts from DNA methylation by... more We introduce a Bayesian semi-supervised method for estimating cell counts from DNA methylation by leveraging an easily obtainable prior knowledge on the cell type composition distribution of the studied tissue. We show mathematically and empirically that alternative methods which attempt to infer explicit cell counts without methylation reference can only capture linear combinations of cell counts rather than provide one component per cell type. Our approach, which allows the construction of a set of components such that each component corresponds to a single cell type, therefore provides a new opportunity to investigate cell compositions in genomic studies of tissues for which it was not possible before.
American Journal of Human Genetics, Jun 1, 2016
Estimation of heritability is fundamental in genetic studies. Recently, heritability estimation u... more Estimation of heritability is fundamental in genetic studies. Recently, heritability estimation using linear mixed models (LMMs) has gained popularity because these estimates can be obtained from unrelated individuals collected in genome-wide association studies. Typically, heritability estimation under LMMs uses the restricted maximum likelihood (REML) approach. Existing methods for the construction of confidence intervals and estimators of SEs for REML rely on asymptotic properties. However, these assumptions are often violated because of the bounded parameter space, statistical dependencies, and limited sample size, leading to biased estimates and inflated or deflated confidence intervals. Here, we show that the estimation of confidence intervals by state-of-the-art methods is inaccurate, especially when the true heritability is relatively low or relatively high. We further show that these inaccuracies occur in datasets including thousands of individuals. Such biases are present, for example, in estimates of heritability of gene expression in the Genotype-Tissue Expression project and of lipid profiles in the Ludwigshafen Risk and Cardiovascular Health study. We also show that often the probability that the genetic component is estimated as 0 is high even when the true heritability is bounded away from 0, emphasizing the need for accurate confidence intervals. We propose a computationally efficient method, ALBI (accurate LMM-based heritability bootstrap confidence intervals), for estimating the distribution of the heritability estimator and for constructing accurate confidence intervals. Our method can be used as an add-on to existing methods for estimating heritability and variance components, such as GCTA, FaST-LMM, GEMMA, or EMMAX.
Epigenetics & Chromatin, Jan 3, 2017
Background: Genetic data are known to harbor information about human demographics, and genotyping... more Background: Genetic data are known to harbor information about human demographics, and genotyping data are commonly used for capturing ancestry information by leveraging genome-wide differences between populations. In contrast, it is not clear to what extent population structure is captured by whole-genome DNA methylation data. Results: We demonstrate, using three large-cohort 450K methylation array data sets, that ancestry information signal is mirrored in genome-wide DNA methylation data and that it can be further isolated more effectively by leveraging the correlation structure of CpGs with cis-located SNPs. Based on these insights, we propose a method, EPISTRUC-TURE, for the inference of ancestry from methylation data, without the need for genotype data. Conclusions: EPISTRUCTURE can be used to infer ancestry information of individuals based on their methylation data in the absence of corresponding genetic data. Although genetic data are often collected in epigenetic studies of large cohorts, these are typically not made publicly available, making the application of EPISTRUCTURE especially useful for anyone working on public data. Implementation of EPISTRUCTURE is available in GLINT, our recently released toolset for DNA methylation analysis at: http://glint-epigenetics.readthedocs.io.
arXiv (Cornell University), Dec 7, 2016
Modern problems in statistics tend to include estimators of high computational complexity and wit... more Modern problems in statistics tend to include estimators of high computational complexity and with complicated distributions. Statistical inference on such estimators usually relies on asymptotic normality assumptions, however, such assumptions are often not applicable for available sample sizes, due to dependencies in the data and other causes. A common alternative is the use of re-sampling procedures, such as the bootstrap, but these may be computationally intensive to an extent that renders them impractical for modern problems. In this paper we develop a method for fast construction of test-inversion bootstrap confidence intervals. Our approach uses quantile regression to model the quantile of an estimator conditional on the true value of the parameter, and we apply it on the Watterson estimator of mutation rate in a standard coalescent model. We demonstrate an improved efficiency of up to 40% from using quantile regression compared to state of the art methods based on stochastic approximation, as measured by the number of simulations required to achieve comparable accuracy.
Research in Computational Molecular Biology, Apr 21, 2018
arXiv (Cornell University), May 22, 2017
Various problems in data analysis and statistical genetics call for recovery of a column-sparse, ... more Various problems in data analysis and statistical genetics call for recovery of a column-sparse, low-rank matrix from noisy observations. We propose ReFACTor, a simple variation of the classical Truncated Singular Value Decomposition (TSVD) algorithm. In contrast to previous sparse principal component analysis (PCA) algorithms, our algorithm can provably reveal a low-rank signal matrix better, and often significantly better, than the widely used TSVD, making it the algorithm of choice whenever columnsparsity is suspected. Empirically, we observe that ReFACTor consistently outperforms TSVD even when the underlying signal is not sparse, suggesting that it is generally safe to use ReFACTor instead of TSVD and PCA. The algorithm is extremely simple to implement and its running time is dominated by the runtime of PCA, making it as practical as standard principal component analysis.
Finding familial relatives using DNA have multiple applications, in genetic genealogy, population... more Finding familial relatives using DNA have multiple applications, in genetic genealogy, population genetics, and forensics. So far, most relative matching algorithms rely on detecting identity-by-descent (IBD) segments with high quality genotype data. Recently, low coverage sequencing (LCS) has received growing attention as a promising cost-effective method to ascertain genomic information. However, with higher error rates, it is unclear whether existing IBD detection can work on LCS datasets. Here, we developed and tested a framework for relative matching using sequencing with 1x coverage (1xLCS). We started by exploring the error characteristics of this method compared to array data. Our results show that after some optimization 1xLCS can exhibit the same genotyping discordance rates as the discordance between two array platforms. Using this observation, we developed a hybrid framework for relative matching and tuned this framework with >2,700 pairs of confirmed genealogical relatives that were genotyped using heterogenous datasets. We then obtained array and 1xLCS on 19 samples and use our framework to find relatives in a database of over 3 million individuals. The total length of shared segments obtained by 1xLCS was virtually indistinguishable to genotyping arrays for matches with a total sharing >200cM (second cousins or closer). For more distant relatives, as long as those were detected by both technologies, the total length obtained by LCS and by genotyping arrays was highly correlated, with no evidence of over-or underestimation. Taken together, our results show that 1xLCS can be a valid alternative to arrays for relative matching, opening the possibility for further democratization of genomic data.
Finding familial relatives using DNA has multiple applications, in genetic genealogy, population ... more Finding familial relatives using DNA has multiple applications, in genetic genealogy, population genetics, and forensics. So far, most relative matching algorithms rely on detecting identity-by-descent (IBD) segments with high quality genotype data. Recently, low coverage sequencing (LCS) has received growing attention as a promising cost-effective method to ascertain genomic information. However, with higher error rates, it is unclear whether existing IBD detection can work on LCS datasets. Here, we developed and tested a framework for relative matching using sequencing with 1× coverage (1×LCS). We started by exploring the error characteristics of this method compared to array data. Our results show that after some optimization 1×LCS can exhibit the same genotyping discordance rates as the discordance between two array platforms. Using this observation, we developed a hybrid framework for relative matching and tuned this framework with >2,700 pairs of confirmed genealogical rela...
Annual International Conference on Research in Computational Molecular Biology, 2018
bioRxiv, 2021
We benchmarked two approaches for the detection of cell-type-specific differential DNA methylatio... more We benchmarked two approaches for the detection of cell-type-specific differential DNA methylation: Tensor Composition Analysis (TCA) and a regression model with interaction terms (CellDMC). Our experiments alongside rigorous mathematical explanations show that TCA is superior over CellDMC, thus resolving recent criticisms suggested by Jing et al. Following misconceptions by Jing and colleagues with modelling cell-type-specificity and the application of TCA, we further discuss best practices for performing association studies at cell-type resolution. The scripts for reproducing all of our results and figures are publicly available at github.com/cozygene/CellTypeSpecificMethylationAnalysis.
Investigative Ophthalmology & Visual Science, 2017
Genome Biology, 2018
We introduce a Bayesian semi-supervised method for estimating cell counts from DNA methylation by... more We introduce a Bayesian semi-supervised method for estimating cell counts from DNA methylation by leveraging an easily obtainable prior knowledge on the cell-type composition distribution of the studied tissue. We show mathematically and empirically that alternative methods which attempt to infer cell counts without methylation reference only capture linear combinations of cell counts rather than provide one component per cell type. Our approach allows the construction of components such that each component corresponds to a single cell type, and provides a new opportunity to investigate cell compositions in genomic studies of tissues for which it was not possible before.
Nature Communications, 2018
Testing for association between a set of genetic markers and a phenotype is a fundamental task in... more Testing for association between a set of genetic markers and a phenotype is a fundamental task in genetic studies. Standard approaches for heritability and set testing strongly rely on parametric models that make specific assumptions regarding phenotypic variability. Here, we show that resulting p-values may be inflated by up to 15 orders of magnitude, in a heritability study of methylation measurements, and in a heritability and expression quantitative trait loci analysis of gene expression profiles. We propose FEATHER, a method for fast permutation-based testing of marker sets and of heritability, which properly controls for false-positive results. FEATHER eliminated 47% of methylation sites found to be heritable by the parametric test, suggesting a substantial inflation of false-positive findings by alternative methods. Our approach can rapidly identify heritable phenotypes out of millions of phenotypes acquired via high-throughput technologies, does not suffer from model misspec...
Uploads
Papers by Regev Schweiger