In modulated photothermal experiments the lateral thermal diffusivity can be obtained from the sl... more In modulated photothermal experiments the lateral thermal diffusivity can be obtained from the slope of the linear relation between the phase of the surface temperature and the distance to the heating spot. However, this slope is greatly affected by heat losses so that the measured thermal diffusivity is overestimated, especially for thin samples of poor thermal conducting materials. In this paper we definitely identify the physical mechanism responsible for the overestimation of the diffusivity as heat conduction to the surrounding gas. Accurate measurements of the thermal diffusivity using the "slope method" have been obtained by keeping the sample in vacuum.
In lock-in ͑modulated͒ thermography the lateral thermal diffusivity can be obtained from the slop... more In lock-in ͑modulated͒ thermography the lateral thermal diffusivity can be obtained from the slope of the linear relation between the phase of the surface temperature and the distance to the heating spot. However, this slope is greatly affected by heat losses, leading to an overestimation of the thermal diffusivity, especially for thin samples of poor thermal conducting materials. In this paper, we present a complete theoretical model to calculate the surface temperature of filaments heated by a focused and modulated laser beam. All heat losses have been included: conduction to the gas, convection, and radiation. Monofilaments and coated wires have been studied. Conduction to the gas has been identified as the most disturbing effect preventing from the direct use of the slope method to measure the thermal diffusivity. As a result, by keeping the sample in vacuum a slope method combining amplitude and phase can be used to obtain the accurate diffusivity value. Measurements performed in a wide variety of filaments confirm the validity of the conclusion. On the other hand, in the case of coated wires, the slope method gives an effective thermal diffusivity, which verifies the in-parallel thermal resistor model. As an application, the slope method has been used to retrieve the thermal conductivity of thin tubes by filling them with a liquid of known thermal properties.
In this paper we propose a new procedure of simultaneous estimation of the effective infrared opt... more In this paper we propose a new procedure of simultaneous estimation of the effective infrared optical absorption coefficient and the thermal diffusivity of solid state samples using the photothermal infrared radiometry method in the transmission configuration. The proposed procedure relies on the analysis of the frequency dependent signal obtained from the samples covered with thin aluminum foil. This method can be applied for both optically opaque and transparent samples. The proposed method is illustrated with the results of the thermal diffusivity and the effective IR absorption coefficient obtained for several Cd 1Àx Mg x Se crystals.
The flash method is the standard technique to measure the thermal diffusivity of solid samples. I... more The flash method is the standard technique to measure the thermal diffusivity of solid samples. It consists of heating the front surface of an opaque sample by a brief light pulse and detecting the temperature evolution at its rear surface. The thermal diffusivity is obtained by measuring the time corresponding to the half maximum of the temperature rise, which only depends on the sample thickness and thermal diffusivity through a simple formula. Up to now, the flash method has been restricted to flat samples. In this work, we extend the flash method to measure the thermal diffusivity of nonflat samples. In particular, we focus on plates with cylindrical and spherical shapes. The theoretical model indicates that the same expression for flat samples can also be applied to cylindrical and spherical plates, except for extremely curved samples. Accordingly, a curvature limit for the application of the expression for flat samples is established. Flash measurements on lead foils of cylindrical shape confirm the validity of the model.
In this paper we propose a new procedure of simultaneous estimation of the effective infrared opt... more In this paper we propose a new procedure of simultaneous estimation of the effective infrared optical absorption coefficient and the thermal diffusivity of solid state samples using the photothermal infrared radiometry method in the transmission configuration. The proposed procedure relies on the analysis of the frequency dependent signal obtained from the samples covered with thin aluminum foil. This method can be applied for both optically opaque and transparent samples. The proposed method is illustrated with the results of the thermal diffusivity and the effective IR absorption coefficient obtained for several Cd 1Àx Mg x Se crystals.
In modulated photothermal experiments the lateral thermal diffusivity can be obtained from the sl... more In modulated photothermal experiments the lateral thermal diffusivity can be obtained from the slope of the linear relation between the phase of the surface temperature and the distance to the heating spot. However, this slope is greatly affected by heat losses so that the measured thermal diffusivity is overestimated, especially for thin samples of poor thermal conducting materials. In this paper we definitely identify the physical mechanism responsible for the overestimation of the diffusivity as heat conduction to the surrounding gas. Accurate measurements of the thermal diffusivity using the "slope method" have been obtained by keeping the sample in vacuum.
In lock-in ͑modulated͒ thermography the lateral thermal diffusivity can be obtained from the slop... more In lock-in ͑modulated͒ thermography the lateral thermal diffusivity can be obtained from the slope of the linear relation between the phase of the surface temperature and the distance to the heating spot. However, this slope is greatly affected by heat losses, leading to an overestimation of the thermal diffusivity, especially for thin samples of poor thermal conducting materials. In this paper, we present a complete theoretical model to calculate the surface temperature of filaments heated by a focused and modulated laser beam. All heat losses have been included: conduction to the gas, convection, and radiation. Monofilaments and coated wires have been studied. Conduction to the gas has been identified as the most disturbing effect preventing from the direct use of the slope method to measure the thermal diffusivity. As a result, by keeping the sample in vacuum a slope method combining amplitude and phase can be used to obtain the accurate diffusivity value. Measurements performed in a wide variety of filaments confirm the validity of the conclusion. On the other hand, in the case of coated wires, the slope method gives an effective thermal diffusivity, which verifies the in-parallel thermal resistor model. As an application, the slope method has been used to retrieve the thermal conductivity of thin tubes by filling them with a liquid of known thermal properties.
In this paper we propose a new procedure of simultaneous estimation of the effective infrared opt... more In this paper we propose a new procedure of simultaneous estimation of the effective infrared optical absorption coefficient and the thermal diffusivity of solid state samples using the photothermal infrared radiometry method in the transmission configuration. The proposed procedure relies on the analysis of the frequency dependent signal obtained from the samples covered with thin aluminum foil. This method can be applied for both optically opaque and transparent samples. The proposed method is illustrated with the results of the thermal diffusivity and the effective IR absorption coefficient obtained for several Cd 1Àx Mg x Se crystals.
The flash method is the standard technique to measure the thermal diffusivity of solid samples. I... more The flash method is the standard technique to measure the thermal diffusivity of solid samples. It consists of heating the front surface of an opaque sample by a brief light pulse and detecting the temperature evolution at its rear surface. The thermal diffusivity is obtained by measuring the time corresponding to the half maximum of the temperature rise, which only depends on the sample thickness and thermal diffusivity through a simple formula. Up to now, the flash method has been restricted to flat samples. In this work, we extend the flash method to measure the thermal diffusivity of nonflat samples. In particular, we focus on plates with cylindrical and spherical shapes. The theoretical model indicates that the same expression for flat samples can also be applied to cylindrical and spherical plates, except for extremely curved samples. Accordingly, a curvature limit for the application of the expression for flat samples is established. Flash measurements on lead foils of cylindrical shape confirm the validity of the model.
In this paper we propose a new procedure of simultaneous estimation of the effective infrared opt... more In this paper we propose a new procedure of simultaneous estimation of the effective infrared optical absorption coefficient and the thermal diffusivity of solid state samples using the photothermal infrared radiometry method in the transmission configuration. The proposed procedure relies on the analysis of the frequency dependent signal obtained from the samples covered with thin aluminum foil. This method can be applied for both optically opaque and transparent samples. The proposed method is illustrated with the results of the thermal diffusivity and the effective IR absorption coefficient obtained for several Cd 1Àx Mg x Se crystals.
Uploads
Papers by Raquel Fuentes