The oxidative stability and the particle size of several types of liposomes were assessed in orde... more The oxidative stability and the particle size of several types of liposomes were assessed in order to characterize their behaviour when submitted to the aggressive conditions of the Artemia enrichments. Results show that all liposomes tested in this study were much more oxidatively stable than a commercial product based on fish oil emulsion. Whereas the initial thiobarbituric acid reactive substances (TBARS) concentration in the emulsion was only slightly higher than in liposomes, the concentration of TBARS in the emulsion increased up to values three orders of magnitude above those registered by liposomes after 2 h of incubation. Among the different liposome formulations, results indicate that vesicles composed of phospholipids containing long-chain highly unsaturated fatty acids (krill phospholipid extract) were generally less stable than those composed of shorter length-chain and more saturated acyl chains. In regards to the particle size changes during enrichment, all liposomes maintained their original size during the experimental period when incubated without nauplii. In the presence of nauplii, liposomes did not exhibit notable changes in their size, except for unilamellar vesicles prepared by the extrusion methodology and formulated with soybean phosphatidylcholine. The implications of the results on the capability of liposomes to be used in Artemia nauplii enrichments are discussed.
The oxidative stability and the particle size of several types of liposomes were assessed in orde... more The oxidative stability and the particle size of several types of liposomes were assessed in order to characterize their behaviour when submitted to the aggressive conditions of the Artemia enrichments. Results show that all liposomes tested in this study were much more oxidatively stable than a commercial product based on fish oil emulsion. Whereas the initial thiobarbituric acid reactive substances (TBARS) concentration in the emulsion was only slightly higher than in liposomes, the concentration of TBARS in the emulsion increased up to values three orders of magnitude above those registered by liposomes after 2 h of incubation. Among the different liposome formulations, results indicate that vesicles composed of phospholipids containing long-chain highly unsaturated fatty acids (krill phospholipid extract) were generally less stable than those composed of shorter length-chain and more saturated acyl chains. In regards to the particle size changes during enrichment, all liposomes maintained their original size during the experimental period when incubated without nauplii. In the presence of nauplii, liposomes did not exhibit notable changes in their size, except for unilamellar vesicles prepared by the extrusion methodology and formulated with soybean phosphatidylcholine. The implications of the results on the capability of liposomes to be used in Artemia nauplii enrichments are discussed.
Uploads
Papers by Pedro González