Papers by Mohamed El Oirdi
The author has granted a nonexclusive license allowing Library and Archives Canada to reproduce, ... more The author has granted a nonexclusive license allowing Library and Archives Canada to reproduce, publish, archive, preserve, conserve, communicate to the public by telecommunication or on the Internet, loan, distribute and sell theses worldwide, for commercial or noncommercial purposes, in microform, paper, electronic and/or any other formats. L'auteur a accorde une licence non exclusive permettant a la Bibliotheque et Archives Canada de reproduire, publier, archiver, sauvegarder, conserver, transmettre au public par telecommunication ou par Nnternet, prefer, distribuer et vendre des theses partout dans le monde, a des fins commerciales ou autres, sur support microforme, papier, electronique et/ou autres formats. Le30juin2009 Le jury a accepte la these de M. Mohamed El Oirdi dans sa version finale Membres de jury
BMC Research Notes, 2012
Background: Rough lemon (Citrus jambhiri Lush.) is the most commonly used Citrus rootstock in sou... more Background: Rough lemon (Citrus jambhiri Lush.) is the most commonly used Citrus rootstock in south Asia. It is extremely sensitive to salt stress that decreases the growth and yield of Citrus crops in many areas worldwide. Over expression of the yeast halotolerant gene (HAL2) results in increasing the level of salt tolerance in transgenic plants. Results: Transformation of rough lemon was carried out by using Agrobacterium tumefaciens strains LBA4404 harboring plasmid pJRM17. Transgenic shoots were selected on kanamycin 100 mg L-1 along with 250 mg L-1 each of cefotaxime and vancomycin for effective inhibition of Agrobacterium growth. The Murashige and Skoog (MS) medium containing 200 μM acetoseryngone (AS) proved to be the best inoculation and co-cultivation medium for transformation. MS medium supplemented with 3 mg L-1 of 6-benzylaminopurine (BA) showed maximum regeneration efficiency of the transformed explants. The final selection of the transformed plants was made on the basis of PCR and Southern blot analysis. Conclusion: Rough lemon has been successfully transformed via Agrobacterium tumefaciens with β-glucuronidase (GUS) and HAL2. Various factors affecting gene transformation and regeneration efficiency were also investigated.
Molecules
Turmeric spice contains curcuminoids, which are polyphenolic compounds found in the Curcuma longa... more Turmeric spice contains curcuminoids, which are polyphenolic compounds found in the Curcuma longa plant’s rhizome. This class of molecules includes curcumin, demethoxycurcumin, and bisdemethoxycurcumin. Using prostate cancer cell lines PC3, LNCaP, DU145, and C42B, we show that curcuminoids inhibit cell proliferation (measured by MTT assay) and induce apoptosis-like cell death (measured by DNA/histone ELISA). A copper chelator (neocuproine) and reactive oxygen species scavengers (thiourea for hydroxyl radical, superoxide dismutase for superoxide anion, and catalase for hydrogen peroxide) significantly inhibit this reaction, thus demonstrating that intracellular copper reacts with curcuminoids in cancer cells to cause DNA damage via ROS generation. We further show that copper-supplemented media sensitize normal breast epithelial cells (MCF-10A) to curcumin-mediated growth inhibition, as determined by decreased cell proliferation. Copper supplementation results in increased expression ...
Journal of Experimental Botany, 2017
An important branch of plant immunity involves the recognition of pathogens by nucleotide-binding... more An important branch of plant immunity involves the recognition of pathogens by nucleotide-binding, leucine-rich repeat (NB-LRR) proteins. However, signaling events downstream of NB-LRR activation are poorly understood. We have analysed the Arabidopsis translatome using ribosome affinity purification and RNA sequencing. Our results show that the translational status of hundreds of transcripts is differentially affected upon activation of the NB-LRR protein RPM1, showing an overall pattern of a switch away from growth-related activities to defense. Among these is the central translational regulator and growth promoter, Target of Rapamycin (TOR) kinase. Suppression of TOR expression leads to increased resistance to pathogens while overexpression of TOR results in increased susceptibility, indicating an important role for translational control in the switch from growth to defense. Furthermore, we show that several additional genes whose mRNAs are translationally regulated, including BIG, CCT2, and CIPK5, are required for both NB-LRR-mediated and basal plant innate immunity, identifying novel actors in plant defense.
Molecular Plant-Microbe Interactions, 2016
In plants, RNA silencing regulates gene expression through the action of Dicer-like (DCL) and Arg... more In plants, RNA silencing regulates gene expression through the action of Dicer-like (DCL) and Argonaute (AGO) proteins via micro RNAs and RNA-dependent DNA methylation (RdDM). In addition, RNA silencing functions as an antiviral defense mechanism by targeting virus-derived double-stranded RNA. Plants encode multiple AGO proteins with specialized functions, including AGO4-like proteins that affect RdDM and AGO2, AGO5, and AGO1, which have antiviral activities. Here, we show that AGO4 is also required for defense against the potexvirus Plantago asiatica mosaic virus (PlAMV), most likely independent of RdDM components such as DCL3, Pol IV, and Pol V. Transient assays showed that AGO4 has direct antiviral activity on PlAMV and, unlike RdDM, this activity does not require nuclear localization of AGO4. Furthermore, although PlAMV infection causes a decrease in AGO4 expression, PlAMV causes a change in AGO4 localization from a largely nuclear to a largely cytoplasmic distribution. These re...
The Plant Cell, 2012
Auxin is a pivotal plant hormone that regulates many aspects of plant growth and development. Aux... more Auxin is a pivotal plant hormone that regulates many aspects of plant growth and development. Auxin signaling is also known to promote plant disease caused by plant pathogens. However, the mechanism by which this hormone confers susceptibility to pathogens is not well understood. Here, we present evidence that fungal and bacterial plant pathogens hijack the host auxin metabolism in Arabidopsis thaliana, leading to the accumulation of a conjugated form of the hormone, indole-3-acetic acid (IAA)-Asp, to promote disease development. We also show that IAA-Asp increases pathogen progression in the plant by regulating the transcription of virulence genes. These data highlight a novel mechanism to promote plant susceptibility to pathogens through auxin conjugation.
The Plant Cell, 2011
Plants have evolved sophisticated mechanisms to sense and respond to pathogen attacks. Resistance... more Plants have evolved sophisticated mechanisms to sense and respond to pathogen attacks. Resistance against necrotrophic pathogens generally requires the activation of the jasmonic acid (JA) signaling pathway, whereas the salicylic acid (SA) signaling pathway is mainly activated against biotrophic pathogens. SA can antagonize JA signaling and vice versa. Here, we report that the necrotrophic pathogen Botrytis cinerea exploits this antagonism as a strategy to cause disease development. We show that B. cinerea produces an exopolysaccharide, which acts as an elicitor of the SA pathway. In turn, the SA pathway antagonizes the JA signaling pathway, thereby allowing the fungus to develop its disease in tomato (Solanum lycopersicum). SA-promoted disease development occurs through Nonexpressed Pathogen Related1. We also show that the JA signaling pathway required for tomato resistance against B. cinerea is mediated by the systemin elicitor. These data highlight a new strategy used by B. ciner...
The Plant Cell, 2007
Although cyclic glucans have been shown to be important for a number of symbiotic and pathogenic ... more Although cyclic glucans have been shown to be important for a number of symbiotic and pathogenic bacterium–plant interactions, their precise roles are unclear. Here, we examined the role of cyclic β-(1,2)-glucan in the virulence of the black rot pathogen Xanthomonas campestris pv campestris (Xcc). Disruption of the Xcc nodule development B (ndvB) gene, which encodes a glycosyltransferase required for cyclic glucan synthesis, generated a mutant that failed to synthesize extracellular cyclic β-(1,2)-glucan and was compromised in virulence in the model plants Arabidopsis thaliana and Nicotiana benthamiana. Infection of the mutant bacterium in N. benthamiana was associated with enhanced callose deposition and earlier expression of the PATHOGENESIS-RELATED1 (PR-1) gene. Application of purified cyclic β-(1,2)-glucan prior to inoculation of the ndvB mutant suppressed the accumulation of callose deposition and the expression of PR-1 in N. benthamiana and restored virulence in both N. bentha...
PLANT PHYSIOLOGY, 2006
Xanthan is the major exopolysaccharide secreted by Xanthomonas spp. Despite its diverse roles in ... more Xanthan is the major exopolysaccharide secreted by Xanthomonas spp. Despite its diverse roles in bacterial pathogenesis of plants, little is known about the real implication of this molecule in Xanthomonas pathogenesis. In this study we show that in contrast to Xanthomonas campestris pv campestris strain 8004 (wild type), the xanthan minus mutant (strain 8397) and the mutant strain 8396, which is producing truncated xanthan, fail to cause disease in both Nicotiana benthamiana and Arabidopsis (Arabidopsis thaliana) plants. In contrast to wild type, 8397 and 8396 strains induce callose deposition in N. benthamiana and Arabidopsis plants. Interestingly, treatment with xanthan but not truncated xanthan, suppresses the accumulation of callose and enhances the susceptibility of both N. benthamiana and Arabidopsis plants to 8397 and 8396 mutant strains. Finally, in concordance, we also show that treatment with an inhibitor of callose deposition previous to infection induces susceptibility ...
Plant Cell Reports, 2009
Streptomyces scabiei is the predominant causal agent of common scab of potato in North America. T... more Streptomyces scabiei is the predominant causal agent of common scab of potato in North America. The virulence of common scab-causing streptomycetes relies on their capacity to synthesize thaxtomins. In this study, the effects of S. scabiei infection and of thaxtomin A, the main toxin produced by S. scabiei, were tested for the elicitation of plant defense molecules in the model plants tobacco (Nicotiana tabacum) and Arabidopsis thaliana. Tobacco leaves infected with spores of S. scabiei strain EF-35 or infiltrated with purified thaxtomin A produced a blue fluorescent compound that was not detected in leaves infiltrated with spores of a S. scabiei mutant deficient in thaxtomin A biosynthesis. Thin layer chromatography and high performance liquid chromatography identified this fluorescent compound as scopoletin, a plant defense phytoalexin. Arabidopsis seedlings grown in liquid medium also excreted scopoletin as a reaction to S. scabiei and thaxtomin A. The effects of the presence of scopoletin on S. scabiei were also investigated. The phytoalexin scopoletin caused a slight reduction of bacterial growth and a severe decrease of thaxtomin A production. Scopoletin was shown to inhibit thaxtomin A production by repression of a gene involved in the toxin biosynthesis. Keywords Common scab Á Model plants Á Scopoletin Á Streptomyces scabiei Á Thaxtomin A Communicated by D. Zaitlin.
New Phytologist, 2007
* Botrytis cinerea is a necrotrophic fungus that causes grey mould on a wide range of food plants... more * Botrytis cinerea is a necrotrophic fungus that causes grey mould on a wide range of food plants, especially grapevine, tomato, soft fruits and vegetables. This disease brings about important economic losses in both pre- and postharvest crops. Successful protection of host plants against this pathogen is severely hampered by a lack of resistance genes in the hosts and the considerable phenotypic diversity of the fungus. * The aim of this study was to test whether B. cinerea manipulates the immunity-signalling pathways in plants to restore its disease. * We showed that B. cinerea caused disease in Nicotiana benthamiana through the activation of two plant signalling genes, EDS1 and SGT1, which have been shown to be essential for resistance against biotrophic pathogens; and more interestingly, virus-induced gene silencing of these two plant signalling components enhanced N. benthamiana resistance to B. cinerea. Finally, plants expressing the baculovirus antiapoptotic protein p35 were more resistant to this necrotrophic pathogen than wild-type plants. * This work highlights a new strategy used by B. cinerea to establish disease. This information is important for the design of strategies to improve plant pathogen resistance.
Molecular Plant-Microbe Interactions®, 2012
Plants use different immune pathways to combat pathogens. The activation of the jasmonic acid (JA... more Plants use different immune pathways to combat pathogens. The activation of the jasmonic acid (JA)-signaling pathway is required for resistance against necrotrophic pathogens; however, to combat biotrophic pathogens, the plants activate mainly the salicylic acid (SA)-signaling pathway. SA can antagonize JA signaling and vice versa. NPR1 (noninducible pathogenesis-related 1) is considered a master regulator of SA signaling. NPR1 interacts with TGA transcription factors, ultimately leading to the activation of SA-dependent responses. SA has been shown to promote disease development caused by the necrotrophic pathogen Botrytis cinerea through NPR1, by suppressing the expression of two JA-dependent defense genes, proteinase inhibitors I and II. We show here that the transcription factor TGA1.a contributes to disease development caused by B. cinerea in tomato by suppressing the expression of proteinase inhibitors I and II. Finally, we present evidence that the SA-signaling pathway contri...
Environmental Microbiology, 2010
To protect themselves, plants have evolved an armoury of defences in response to pathogens and ot... more To protect themselves, plants have evolved an armoury of defences in response to pathogens and other stress situations. These include the production of pathogenesis-related (PR) proteins and the accumulation of antimicrobial molecules such as phytoalexins. Here we report that resistance of tobacco to Botrytis cinerea is cultivar specific. Nicotiana tabacum cv. Petit Havana but not N. tabacum cv. Xanthi or cv. samsun is resistant to B. cinerea. This resistance is correlated with the accumulation of the phytoalexin scopoletin and PR proteins. We also show that this resistance depends on the type of B. cinerea stage. Nicotiana tabacum cv. Petit Havana is more resistant to spores than to mycelium of B. cinerea. This reduced resistance of N. tabacum cv. Petit Havana to the mycelium compared with spores is correlated with the suppression of PR proteins accumulation and the capacity of the mycelium, not the spores, to metabolize scopoletin. These data present an important advance in understanding the strategies used by B. cinerea to establish its disease on tobacco plants.
Journal of Experimental Botany, 2018
During the editing of the manuscript, a statement was inadvertently included in the discussion th... more During the editing of the manuscript, a statement was inadvertently included in the discussion that did not reflect the conclusions of the authors. The statement has now been updated. The original statement was as follows: "It is interesting to speculate that CIPK5 might positively regulate TOR and that a lack of this activity in the cipk5 mutant results in decreased TOR activity, leading to a more efficient growth-to-defense transition, similar to the TOR RNAi line.
Uploads
Papers by Mohamed El Oirdi