Papers by Mason Kellinger
Every year biotechnology labs generate a combined total of ∼5.5 million tons of plastic waste. As... more Every year biotechnology labs generate a combined total of ∼5.5 million tons of plastic waste. As the global bioeconomy expands, biofoundries will inevitably increase plastic consumption in-step with synthetic biology scaling. Decontamination and reuse of single-use plastics could increase sustainability and reduce recurring costs of biological research. However, throughput and variable cleaning quality make manual decontamination impractical in most instances. Automating single-use plastic cleaning with liquid handling robots makes decontamination more practical by offering higher throughput and consistent cleaning quality. However, open-source, validated protocols using low-cost lab robotics for effective decontamination of plasticware—facilitating safe reuse—have not yet been developed. Here we introduce and validate TidyTron: a library of protocols for cleaning micropipette tips and microtiter plates that are contaminated with DNA,E. coli, andS. cerevisiae. We tested a variety o...
As one of the newest fields of engineering, synthetic biology relies upon a trial-and-error Desig... more As one of the newest fields of engineering, synthetic biology relies upon a trial-and-error Design-Build-Test-Learn approach to simultaneously learn how function is encoded in biology and attempt to engineer it. Many software and hardware platforms have been developed to automate, optimize, and algorithmically perform each step of the Design-Build-Test-Learn cycle. However, there are many fewer options for automating the Build step. Build typically involves DNA assembly, which remains manual, low throughput, and unreliable in most cases, limiting our ability to advance the science and engineering of biology. Here, we present AssemblyTron: an open-source python package to integrate j5 DNA assembly design software outputs with build implementation in Opentrons liquid handling robotics with minimal human intervention. We demonstrate the versatility of AssemblyTron through several scarless, multipart DNA assemblies beginning from fragment amplification. We show that AssemblyTron can per...
Uploads
Papers by Mason Kellinger