Complex I deficiency is the most frequent cause of oxidative phosphorylation disorders. The disea... more Complex I deficiency is the most frequent cause of oxidative phosphorylation disorders. The disease features a large diversity of clinical symptoms often leading to progressive encephalomyopathies with a fatal outcome. There is currently no cure, and although disease-causing mutations have been found in the genes encoding complex I subunits, half of the cases remain unexplained. However, in the past 5 years a new class of complex I disease genes has emerged with the finding of specific assembly factors. So far nine such genes have been described and it is believed that in the near future more will be found. In this review, we will address whether the functions of these chaperones point towards a general molecular mechanism of disease and whether this enables us to design a treatment for complex I deficiency.
Mitochondrial complex I (CI) is a large assembly of 45 different subunits, and defects in its bio... more Mitochondrial complex I (CI) is a large assembly of 45 different subunits, and defects in its biogenesis are the most frequent cause of mitochondrial disorders. In vitro evidence suggests a stepwise assembly process involving pre-assembled modules. However, whether these modules also exist in vivo is as yet unresolved. To answer this question, we here applied submitochondrial fluorescence recovery after photobleaching to HEK293 cells expressing 6 GFP-tagged subunits selected on the basis of current CI assembly models. We established that each subunit was partially present in a virtually immobile fraction, possibly representing the holo-enzyme. Four subunits (NDUFV1, NDUFV2, NDUFA2, and NDUFA12) were also present as highly mobile matrix-soluble monomers, whereas, in sharp contrast, the other two subunits (NDUFB6 and NDUFS3) were additionally present in a slowly mobile fraction. In the case of the integral membrane protein NDUFB6, this fraction most likely represented one or more membrane-bound subassemblies, whereas biochemical evidence suggested that for the NDUFS3 protein this fraction most probably corresponded to a matrix-soluble subassembly. Our results provide first time evidence for the existence of CI subassemblies in mitochondria of living cells.
The biogenesis and maintenance of mitochondria relies on a sizable number of proteins. Many of th... more The biogenesis and maintenance of mitochondria relies on a sizable number of proteins. Many of these proteins are organized into complexes, which are located in the mitochondrial inner membrane. Blue Native polyacrylamide gel electrophoresis (BN-PAGE) is a method for the isolation of intact protein complexes. Although it was initially used to study mitochondrial respiratory chain enzymes, it can also be applied to other protein complexes. The use of BN-PAGE has increased exponentially over the past few years and new applications have been developed. Here we review how to set up the basic system and outline modifications that can be applied to address specific research questions. Increasing the upper mass limit of complexes that can be separated by BN-PAGE can be achieved by using agarose instead of acrylamide. BN-PAGE can also be used to study assembly of mitochondrial protein complexes. Other applications include in-gel measurements of enzyme activity by histochemical staining and preparative native electrophoresis to isolate a protein complex. Finally, new ways of identifying protein spots in Blue Native gels using mass spectrometry are briefly discussed. Ó
Mutations in human mitochondrial DNA are a well recognized cause of disease. A mutation at nucleo... more Mutations in human mitochondrial DNA are a well recognized cause of disease. A mutation at nucleotide position 8993 of human mitochondrial DNA, located within the gene for ATP synthase subunit 6, is associated with the neurological muscle weakness, ataxia, and retinitis pigmentosa (NARP) syndrome. To enable analysis of this mutation in control nuclear backgrounds, two different cell lines were transformed with mitochondria carrying NARP mutant mitochondrial DNA. Transformant cell lines had decreased ATP synthesis capacity, and many also had abnormally high levels of two ATP synthase sub-complexes, one of which was F 1 -ATPase. A combination of metabolic labeling and immunoblotting experiments indicated that assembly of ATP synthase was slowed and that the assembled holoenzyme was unstable in cells carrying NARP mutant mitochondrial DNA compared with control cells. These findings indicate that altered assembly and stability of ATP synthase are underlying molecular defects associated with the NARP mutation in subunit 6 of ATP synthase, yet intrinsic enzyme activity is also compromised.
Biochemical and Biophysical Research Communications, 2000
Cardiolipin (CL) and phosphatidylglycerol (PG) are the major polyglycerophospholipids observed in... more Cardiolipin (CL) and phosphatidylglycerol (PG) are the major polyglycerophospholipids observed in mammalian tissues. CL is exclusively found in the inner mitochondrial membrane and is required for optimal function of many of the respiratory and ATPsynthesizing enzymes. The role of CL in oxidative phosphorylation is, however, not fully understood and although reduced CL content leads to aberrant cell function, no human disorders with a primary defect in cardiolipin metabolism have been described. In this paper we present evidence that patients with the rare disorder X-linked cardioskeletal myopathy and neutropenia (Barth syndrome, MIM 302060) have a primary defect in CL and PG remodeling. We investigated phospholipid metabolism in cultured skin fibroblasts of patients and show that the biosynthesis rate of PG and CL is normal but that the CL pool size is 75% reduced, indicating accelerated degradation. Moreover, the incorporation of linoleic acid, which is the characteristic acyl side chain found in mammalian CL, into both PG and CL is significantly reduced, whereas the incorporation of other fatty acids into these phospholipids is normal. We show that this defect was only observed in Barth syndrome patients' cells and not in cells obtained from patients with primary defects in the respiratory chain, demonstrating that the observed defect is not secondary to respiratory chain dysfunction. These results imply that the G4.5 gene product, which is mutated in Barth syndrome patients, is specifically involved in the remodeling of PG and CL and for the first time identify an essential factor in this important cellular process.
PURPOSE OF REVIEW: Disturbances in the mitochondrial oxidative phosphorylation pathway most often... more PURPOSE OF REVIEW: Disturbances in the mitochondrial oxidative phosphorylation pathway most often lead to devastating disorders with a fatal outcome. Of these, complex I deficiency is the most frequently encountered. Recent characterization of the mitochondrial and nuclear DNA-encoded complex I subunits has allowed mutational analysis and reliable prenatal diagnosis. Nevertheless, complex-I-deficient patients without a mutation in any of the known
Complex III (cytochrome bc1) is a protein complex of the mitochondrial inner membrane that transf... more Complex III (cytochrome bc1) is a protein complex of the mitochondrial inner membrane that transfers electrons from ubiquinol to cytochrome c. Its assembly requires the coordinated expression of mitochondrial-encoded cytochrome b and nuclear-encoded subunits and assembly factors. Complex III deficiency is a severe multisystem disorder caused by mutations in subunit genes or assembly factors. Sequence-profile-based orthology predicts C11orf83, hereafter named UQCC3, to be the ortholog of the fungal complex III assembly factor CBP4. We describe a homozygous c.59T>A missense mutation in UQCC3 from a consanguineous patient diagnosed with isolated complex III deficiency, displaying lactic acidosis, hypoglycemia, hypotonia and delayed development without dysmorphic features. Patient fibroblasts have reduced complex III activity and lower levels of the holocomplex and its subunits than controls. They have no detectable UQCC3 protein and have lower levels of cytochrome b protein. Further...
Disturbances in the assembly of mitochondrial complex I (CI) are a frequent cause of mitochondria... more Disturbances in the assembly of mitochondrial complex I (CI) are a frequent cause of mitochondrial disorders. Several lines of evidence hint at a semi-sequential assembly pathway, in which the 45 individual subunits that form the holoenzyme are pieced together by means of smaller intermediates. To understand this process, it is necessary to explain the exact order, the rate-limiting steps, and the dynamics of subunit incorporation. In this chapter, we describe an approach to regulate the expression levels of an AcGFP(1)-tagged subunit (NDUFS3) in mammalian cells by means of a tetracycline-inducible promoter. This strategy allows the study of the dynamics of CI assembly intermediates in living cells on native gels. After establishing that the AcGFP(1) tag does not interfere with the activity and assembly of the enzyme, we show how this system can be used to trace the labeled subunit in an induction pulse-chase experiment or to study its accumulation in specific assembly intermediates...
Oxidative phosphorylation (OXPHOS) is one of the most important functions of mitochondria, the po... more Oxidative phosphorylation (OXPHOS) is one of the most important functions of mitochondria, the power plants of the cell. OXPHOS is the oxidation of substrates and the production of energy as adenosine-triphosphate (ATP). Defects of the OXPHOS-system form a group of diseases that are known as mitochondrial disorders. Most patients develop symptoms in infancy, especially muscle weakness, exercise intolerance and developmental delay. Lactic acid concentration in body fluids does not have to be elevated. Histopathological and especially biochemical investigations of muscle and fibroblasts are an essential part of the diagnostic process. In this report we describe biochemistry, molecular biology, clinical presentation, diagnostics and therapy of OXPHOS-system defects. The actual research topics of the Nijmegen Center for Mitochondrial Disorders are highlighted, focussing on complex I. Samenvatting Een belangrijke functie van mitochon-drie¨n, de energiefabrieken van de cel, is de oxidatieve fosforylering (OXFOS). Hieronder wordt verstaan de oxidatie van brandstoffen en de productie van energie in de vorm van adenosinetrifosfaat (ATP). Stoornissen in het OXFOS-systeem geven aanleiding tot een groep van ziekten die bekendstaat als mitochondrie¨le ziekten. De meeste patie¨nten ontwikkelen symptomen op de vroege kinderleeftijd, vooral spierzwakte, beperkt uithoudingsvermogen en retardatie. De lactaatconcentratie in lichaamsvloeistoffen is zeker niet altijd verhoogd. Histopathologisch en met name biochemisch onderzoek van de spier en fibroblasten vormen een essentieel onderdeel van het diagnostisch proces. In dit artikel worden achtereenvolgens biochemie, moleculaire biologie, klinische presentatie, diagnostiek en therapie van defecten van het OXFOS-systeem beschreven. Tevens wordt ingegaan op de huidige researchonderwerpen binnen het Nijmegen Centrum voor Mitochondrie¨le Ziekten, waarbij het accent van het onderzoek ligt op complex I.
Human complex I (NADH:ubiquinone oxidoreductase; EC 1.6.5.3) is the first and largest multi-prote... more Human complex I (NADH:ubiquinone oxidoreductase; EC 1.6.5.3) is the first and largest multi-protein assembly of the mitochondrial oxidative phosphorylation (OXPHOS) system; the final biochemical cascade of events leading to the production of ATP. The complex consists of 46 subunits, 7 encoded by the mitochondrial DNA and the remainder by the nuclear genome. In recent years, numerous gene mutations leading to an isolated complex I deficiency have been characterized in both genomes. Disorders associated with complex I deficiency (OMIM 252010) mostly lead to multi-system disorders affecting brain, skeletal muscle and the heart. Of these, Leigh syndrome, a progressive fatal encephalopathy symmetrically affecting specific areas of the brain, brainstem and myelin, is the most frequently observed phenotype. Here, we review the current understanding of the cell biological consequences of isolated complex I deficiencies and propose further directions the field needs to take in order to develop rational treatment strategies for these devastating disorders.
The oxidative phosphorylation (OXPHOS) system consists of five multiprotein complexes and two mob... more The oxidative phosphorylation (OXPHOS) system consists of five multiprotein complexes and two mobile electron carriers embedded in the lipid bilayer of the mitochondrial inner membrane. With the exception of complex II and the mobile carriers, the other parts of the OXPHOS system are under dual genetic control. Due to this bigenomic control, the inheritance of OXPHOS system defects is either maternal, in the case of mitochondrial DNA mutations, autosomal or X-linked, in the case of nuclear gene defects. In this review, our current genetic understanding of OXPHOS system enzyme deficiencies will be summarized, and future directions that the field might take to unravel so-far genetically unresolved OXPHOS system enzyme deficiencies will be described, with special emphasis on complex I biogenesis.
The assembly of cytochrome-c oxidase was studied in human cells cultured in the presence of inhib... more The assembly of cytochrome-c oxidase was studied in human cells cultured in the presence of inhibitors of mitochondrial or cytosolic protein synthesis. Mitochondrial fractions were resolved using two-dimensional PAGE (blue native PAGE and tricine/SDS/PAGE) and subsequent western blots were developed with monoclonal antibodies against specific subunits of cytochrome-c oxidase. Proteins were also visualized using metabolic labeling followed by two-dimensional electrophoresis and fluorography. These techniques allowed identification of two assembly intermediates of cytochrome-c oxidase. Assembly of the 13 subunits of cytochrome-c oxidase starts with the association of subunit I with subunit IV. Then a larger subcomplex is formed, lacking only subunits VIa and either VIIa or VIIb.
Mitochondrial oxidative phosphorylation (OXPHOS) is responsible for generating the majority of ce... more Mitochondrial oxidative phosphorylation (OXPHOS) is responsible for generating the majority of cellular ATP. Complex III (ubiquinol-cytochrome c oxidoreductase) is the third of five OXPHOS complexes. Complex III assembly relies on the coordinated expression of the mitochondrial and nuclear genomes, with 10 subunits encoded by nuclear DNA and one by mitochondrial DNA (mtDNA). Complex III deficiency is a debilitating and often fatal disorder that can arise from mutations in complex III subunit genes or one of three known complex III assembly factors. The molecular cause for complex III deficiency in about half of cases, however, is unknown and there are likely many complex III assembly factors yet to be identified. Here, we used Massively Parallel Sequencing to identify a homozygous splicing mutation in the gene encoding Ubiquinol-Cytochrome c Reductase Complex Assembly Factor 2 (UQCC2) in a consanguineous Lebanese patient displaying complex III deficiency, severe intrauterine growth retardation, neonatal lactic acidosis and renal tubular dysfunction. We prove causality of the mutation via lentiviral correction studies in patient fibroblasts. Sequence-profile based orthology prediction shows UQCC2 is an ortholog of the Saccharomyces cerevisiae complex III assembly factor, Cbp6p, although its sequence has diverged substantially. Co-purification studies show that UQCC2 interacts with UQCC1, the predicted ortholog of the Cbp6p binding partner, Cbp3p. Fibroblasts from the patient with UQCC2 mutations have deficiency of UQCC1, while UQCC1-depleted cells have reduced levels of UQCC2 and complex III. We show that UQCC1 binds the newly synthesized mtDNA-encoded cytochrome b subunit of complex III and that UQCC2 patient fibroblasts have specific defects in the synthesis or stability of cytochrome b. This work reveals a new cause for complex III deficiency that can assist future patient diagnosis, and provides insight into human complex III assembly by establishing that UQCC1 and UQCC2 are complex III assembly factors participating in cytochrome b biogenesis.
Autosomal recessive cutis laxa type 2B (ARCL2B; OMIM # 612940) is a segmental progeroid disorder ... more Autosomal recessive cutis laxa type 2B (ARCL2B; OMIM # 612940) is a segmental progeroid disorder caused by mutations in PYCR1 encoding pyrroline-5-carboxylate reductase 1, which is part of the conserved proline de novo synthesis pathway. Here we describe 33 patients with PYCR1-related ARCL from 27 families with initial diagnoses varying between wrinkly skin syndrome, gerodermia osteodysplastica, De Barsy syndrome or more severe progeria syndromes. Given the difficult differential diagnosis of ARCL syndromes we performed a systematic comparison of clinical features of PYCR1-related ARCL. Intrauterine growth retardation, a characteristic triangular facial gestalt, psychomotor retardation, and hypotonia were the most relevant distinctive hallmarks of ARCL due to proline de novo synthesis defects. Corneal clouding or cataracts, athetoid movements, and finger contractures were rather rare features, but had a high predictive value. In our cohort we identified 20 different PYCR1 mutations of which seven were novel. Most of the mutations accumulated in exons 4 to 6. Missense alterations of highly conserved residues were most frequent followed by splice site changes and a single nonsense mutation. j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / y m g m e
Dysfunction of complex I (NADH:ubiquinone oxidoreductase; CI), the largest enzyme of the oxidativ... more Dysfunction of complex I (NADH:ubiquinone oxidoreductase; CI), the largest enzyme of the oxidative phosphorylation (OXPHOS) system, often results in severe neuromuscular disorders and early childhood death. Mutations in its seven mitochondrial and 38 nuclear DNA-encoded structural components can only partly explain these deWciencies. Recently, CI assembly chaperones NDUFAF1 and B17.2L were linked to CI deWciency, but it is still unclear by which mechanism. To better understand their requirement during assembly we have studied their presence in CI subcomplexes in a cohort of CI deWcient patients using one-and two-dimensional blue-native PAGE. This analysis revealed distinct diVerences between their associations to subcomplexes in diVerent patients. B17.2L occurred in a 830 kDa subcomplex speciWcally in patients with mutations in subunits NDUFV1 and NDUFS4. Contrasting with this seemingly speciWc requirement, the previously described NDUFAF1 association to 500-850 kDa intermediates did not appear to be related to the nature and severity of the CI assembly defect. Surprisingly, even in the absence of assembly intermediates in a patient harboring a mutation in translation elongation factor G1 (EFG1), NDUFAF1 remained associated to the 500-850 kDa subcomplexes. These Wndings illustrate the diVerence in mechanism between B17.2L and NDUFAF1 and suggest that the involvement of NDUFAF1 in the assembly process could be indirect rather than direct via the binding to assembly intermediates.
We describe a novel mitochondrial ND2 mutation (T4681C) in a patient presenting with Leigh Syndro... more We describe a novel mitochondrial ND2 mutation (T4681C) in a patient presenting with Leigh Syndrome. Biochemical analyses revealed a low isolated complex I activity in patient's fibroblasts, blood and skeletal muscle. Mutant transmitochondrial cybrid clones retained the specific complex I defect, demonstrating the mitochondrial genetic origin of the disease. The mutation leads to a L71P substitution at an evolutionary conserved amino acid stretch. By two-dimensional blue native electrophoresis (2D-BN-SDS-PAGE), decreased complex I levels were observed together with an accumulation of specific assembly intermediates, suggesting that the mutation disturbs the complex I assembly pathway.
Mitochondria rely on their own translation system, with the mitochondrial ribosome (mitoribosome)... more Mitochondria rely on their own translation system, with the mitochondrial ribosome (mitoribosome) as its central component, for the synthesis of 13 proteins of the oxidative phosphorylation system. Mitoribosomes have undergone major remodeling during their evolution. However, a comprehensive study of the evolution of the mitoribosomal proteome remains to be established. Such a study also bears relevance for the potential identification of genes that cause mitochondrial dysfunction in human. The aim of the present study is therefore twofold, from an evolutionary and a disease point of view: (1) gain insight into the evolution of the mitoribosome and its protein content in various eukaryotic species; (2) prioritize mitochondrial ribosomal proteins (MRPs) as candidate genes for their involvement in mitochondrial disease.
Complex I deficiency is the most frequent cause of oxidative phosphorylation disorders. The disea... more Complex I deficiency is the most frequent cause of oxidative phosphorylation disorders. The disease features a large diversity of clinical symptoms often leading to progressive encephalomyopathies with a fatal outcome. There is currently no cure, and although disease-causing mutations have been found in the genes encoding complex I subunits, half of the cases remain unexplained. However, in the past 5 years a new class of complex I disease genes has emerged with the finding of specific assembly factors. So far nine such genes have been described and it is believed that in the near future more will be found. In this review, we will address whether the functions of these chaperones point towards a general molecular mechanism of disease and whether this enables us to design a treatment for complex I deficiency.
Mitochondrial complex I (CI) is a large assembly of 45 different subunits, and defects in its bio... more Mitochondrial complex I (CI) is a large assembly of 45 different subunits, and defects in its biogenesis are the most frequent cause of mitochondrial disorders. In vitro evidence suggests a stepwise assembly process involving pre-assembled modules. However, whether these modules also exist in vivo is as yet unresolved. To answer this question, we here applied submitochondrial fluorescence recovery after photobleaching to HEK293 cells expressing 6 GFP-tagged subunits selected on the basis of current CI assembly models. We established that each subunit was partially present in a virtually immobile fraction, possibly representing the holo-enzyme. Four subunits (NDUFV1, NDUFV2, NDUFA2, and NDUFA12) were also present as highly mobile matrix-soluble monomers, whereas, in sharp contrast, the other two subunits (NDUFB6 and NDUFS3) were additionally present in a slowly mobile fraction. In the case of the integral membrane protein NDUFB6, this fraction most likely represented one or more membrane-bound subassemblies, whereas biochemical evidence suggested that for the NDUFS3 protein this fraction most probably corresponded to a matrix-soluble subassembly. Our results provide first time evidence for the existence of CI subassemblies in mitochondria of living cells.
The biogenesis and maintenance of mitochondria relies on a sizable number of proteins. Many of th... more The biogenesis and maintenance of mitochondria relies on a sizable number of proteins. Many of these proteins are organized into complexes, which are located in the mitochondrial inner membrane. Blue Native polyacrylamide gel electrophoresis (BN-PAGE) is a method for the isolation of intact protein complexes. Although it was initially used to study mitochondrial respiratory chain enzymes, it can also be applied to other protein complexes. The use of BN-PAGE has increased exponentially over the past few years and new applications have been developed. Here we review how to set up the basic system and outline modifications that can be applied to address specific research questions. Increasing the upper mass limit of complexes that can be separated by BN-PAGE can be achieved by using agarose instead of acrylamide. BN-PAGE can also be used to study assembly of mitochondrial protein complexes. Other applications include in-gel measurements of enzyme activity by histochemical staining and preparative native electrophoresis to isolate a protein complex. Finally, new ways of identifying protein spots in Blue Native gels using mass spectrometry are briefly discussed. Ó
Mutations in human mitochondrial DNA are a well recognized cause of disease. A mutation at nucleo... more Mutations in human mitochondrial DNA are a well recognized cause of disease. A mutation at nucleotide position 8993 of human mitochondrial DNA, located within the gene for ATP synthase subunit 6, is associated with the neurological muscle weakness, ataxia, and retinitis pigmentosa (NARP) syndrome. To enable analysis of this mutation in control nuclear backgrounds, two different cell lines were transformed with mitochondria carrying NARP mutant mitochondrial DNA. Transformant cell lines had decreased ATP synthesis capacity, and many also had abnormally high levels of two ATP synthase sub-complexes, one of which was F 1 -ATPase. A combination of metabolic labeling and immunoblotting experiments indicated that assembly of ATP synthase was slowed and that the assembled holoenzyme was unstable in cells carrying NARP mutant mitochondrial DNA compared with control cells. These findings indicate that altered assembly and stability of ATP synthase are underlying molecular defects associated with the NARP mutation in subunit 6 of ATP synthase, yet intrinsic enzyme activity is also compromised.
Biochemical and Biophysical Research Communications, 2000
Cardiolipin (CL) and phosphatidylglycerol (PG) are the major polyglycerophospholipids observed in... more Cardiolipin (CL) and phosphatidylglycerol (PG) are the major polyglycerophospholipids observed in mammalian tissues. CL is exclusively found in the inner mitochondrial membrane and is required for optimal function of many of the respiratory and ATPsynthesizing enzymes. The role of CL in oxidative phosphorylation is, however, not fully understood and although reduced CL content leads to aberrant cell function, no human disorders with a primary defect in cardiolipin metabolism have been described. In this paper we present evidence that patients with the rare disorder X-linked cardioskeletal myopathy and neutropenia (Barth syndrome, MIM 302060) have a primary defect in CL and PG remodeling. We investigated phospholipid metabolism in cultured skin fibroblasts of patients and show that the biosynthesis rate of PG and CL is normal but that the CL pool size is 75% reduced, indicating accelerated degradation. Moreover, the incorporation of linoleic acid, which is the characteristic acyl side chain found in mammalian CL, into both PG and CL is significantly reduced, whereas the incorporation of other fatty acids into these phospholipids is normal. We show that this defect was only observed in Barth syndrome patients' cells and not in cells obtained from patients with primary defects in the respiratory chain, demonstrating that the observed defect is not secondary to respiratory chain dysfunction. These results imply that the G4.5 gene product, which is mutated in Barth syndrome patients, is specifically involved in the remodeling of PG and CL and for the first time identify an essential factor in this important cellular process.
PURPOSE OF REVIEW: Disturbances in the mitochondrial oxidative phosphorylation pathway most often... more PURPOSE OF REVIEW: Disturbances in the mitochondrial oxidative phosphorylation pathway most often lead to devastating disorders with a fatal outcome. Of these, complex I deficiency is the most frequently encountered. Recent characterization of the mitochondrial and nuclear DNA-encoded complex I subunits has allowed mutational analysis and reliable prenatal diagnosis. Nevertheless, complex-I-deficient patients without a mutation in any of the known
Complex III (cytochrome bc1) is a protein complex of the mitochondrial inner membrane that transf... more Complex III (cytochrome bc1) is a protein complex of the mitochondrial inner membrane that transfers electrons from ubiquinol to cytochrome c. Its assembly requires the coordinated expression of mitochondrial-encoded cytochrome b and nuclear-encoded subunits and assembly factors. Complex III deficiency is a severe multisystem disorder caused by mutations in subunit genes or assembly factors. Sequence-profile-based orthology predicts C11orf83, hereafter named UQCC3, to be the ortholog of the fungal complex III assembly factor CBP4. We describe a homozygous c.59T>A missense mutation in UQCC3 from a consanguineous patient diagnosed with isolated complex III deficiency, displaying lactic acidosis, hypoglycemia, hypotonia and delayed development without dysmorphic features. Patient fibroblasts have reduced complex III activity and lower levels of the holocomplex and its subunits than controls. They have no detectable UQCC3 protein and have lower levels of cytochrome b protein. Further...
Disturbances in the assembly of mitochondrial complex I (CI) are a frequent cause of mitochondria... more Disturbances in the assembly of mitochondrial complex I (CI) are a frequent cause of mitochondrial disorders. Several lines of evidence hint at a semi-sequential assembly pathway, in which the 45 individual subunits that form the holoenzyme are pieced together by means of smaller intermediates. To understand this process, it is necessary to explain the exact order, the rate-limiting steps, and the dynamics of subunit incorporation. In this chapter, we describe an approach to regulate the expression levels of an AcGFP(1)-tagged subunit (NDUFS3) in mammalian cells by means of a tetracycline-inducible promoter. This strategy allows the study of the dynamics of CI assembly intermediates in living cells on native gels. After establishing that the AcGFP(1) tag does not interfere with the activity and assembly of the enzyme, we show how this system can be used to trace the labeled subunit in an induction pulse-chase experiment or to study its accumulation in specific assembly intermediates...
Oxidative phosphorylation (OXPHOS) is one of the most important functions of mitochondria, the po... more Oxidative phosphorylation (OXPHOS) is one of the most important functions of mitochondria, the power plants of the cell. OXPHOS is the oxidation of substrates and the production of energy as adenosine-triphosphate (ATP). Defects of the OXPHOS-system form a group of diseases that are known as mitochondrial disorders. Most patients develop symptoms in infancy, especially muscle weakness, exercise intolerance and developmental delay. Lactic acid concentration in body fluids does not have to be elevated. Histopathological and especially biochemical investigations of muscle and fibroblasts are an essential part of the diagnostic process. In this report we describe biochemistry, molecular biology, clinical presentation, diagnostics and therapy of OXPHOS-system defects. The actual research topics of the Nijmegen Center for Mitochondrial Disorders are highlighted, focussing on complex I. Samenvatting Een belangrijke functie van mitochon-drie¨n, de energiefabrieken van de cel, is de oxidatieve fosforylering (OXFOS). Hieronder wordt verstaan de oxidatie van brandstoffen en de productie van energie in de vorm van adenosinetrifosfaat (ATP). Stoornissen in het OXFOS-systeem geven aanleiding tot een groep van ziekten die bekendstaat als mitochondrie¨le ziekten. De meeste patie¨nten ontwikkelen symptomen op de vroege kinderleeftijd, vooral spierzwakte, beperkt uithoudingsvermogen en retardatie. De lactaatconcentratie in lichaamsvloeistoffen is zeker niet altijd verhoogd. Histopathologisch en met name biochemisch onderzoek van de spier en fibroblasten vormen een essentieel onderdeel van het diagnostisch proces. In dit artikel worden achtereenvolgens biochemie, moleculaire biologie, klinische presentatie, diagnostiek en therapie van defecten van het OXFOS-systeem beschreven. Tevens wordt ingegaan op de huidige researchonderwerpen binnen het Nijmegen Centrum voor Mitochondrie¨le Ziekten, waarbij het accent van het onderzoek ligt op complex I.
Human complex I (NADH:ubiquinone oxidoreductase; EC 1.6.5.3) is the first and largest multi-prote... more Human complex I (NADH:ubiquinone oxidoreductase; EC 1.6.5.3) is the first and largest multi-protein assembly of the mitochondrial oxidative phosphorylation (OXPHOS) system; the final biochemical cascade of events leading to the production of ATP. The complex consists of 46 subunits, 7 encoded by the mitochondrial DNA and the remainder by the nuclear genome. In recent years, numerous gene mutations leading to an isolated complex I deficiency have been characterized in both genomes. Disorders associated with complex I deficiency (OMIM 252010) mostly lead to multi-system disorders affecting brain, skeletal muscle and the heart. Of these, Leigh syndrome, a progressive fatal encephalopathy symmetrically affecting specific areas of the brain, brainstem and myelin, is the most frequently observed phenotype. Here, we review the current understanding of the cell biological consequences of isolated complex I deficiencies and propose further directions the field needs to take in order to develop rational treatment strategies for these devastating disorders.
The oxidative phosphorylation (OXPHOS) system consists of five multiprotein complexes and two mob... more The oxidative phosphorylation (OXPHOS) system consists of five multiprotein complexes and two mobile electron carriers embedded in the lipid bilayer of the mitochondrial inner membrane. With the exception of complex II and the mobile carriers, the other parts of the OXPHOS system are under dual genetic control. Due to this bigenomic control, the inheritance of OXPHOS system defects is either maternal, in the case of mitochondrial DNA mutations, autosomal or X-linked, in the case of nuclear gene defects. In this review, our current genetic understanding of OXPHOS system enzyme deficiencies will be summarized, and future directions that the field might take to unravel so-far genetically unresolved OXPHOS system enzyme deficiencies will be described, with special emphasis on complex I biogenesis.
The assembly of cytochrome-c oxidase was studied in human cells cultured in the presence of inhib... more The assembly of cytochrome-c oxidase was studied in human cells cultured in the presence of inhibitors of mitochondrial or cytosolic protein synthesis. Mitochondrial fractions were resolved using two-dimensional PAGE (blue native PAGE and tricine/SDS/PAGE) and subsequent western blots were developed with monoclonal antibodies against specific subunits of cytochrome-c oxidase. Proteins were also visualized using metabolic labeling followed by two-dimensional electrophoresis and fluorography. These techniques allowed identification of two assembly intermediates of cytochrome-c oxidase. Assembly of the 13 subunits of cytochrome-c oxidase starts with the association of subunit I with subunit IV. Then a larger subcomplex is formed, lacking only subunits VIa and either VIIa or VIIb.
Mitochondrial oxidative phosphorylation (OXPHOS) is responsible for generating the majority of ce... more Mitochondrial oxidative phosphorylation (OXPHOS) is responsible for generating the majority of cellular ATP. Complex III (ubiquinol-cytochrome c oxidoreductase) is the third of five OXPHOS complexes. Complex III assembly relies on the coordinated expression of the mitochondrial and nuclear genomes, with 10 subunits encoded by nuclear DNA and one by mitochondrial DNA (mtDNA). Complex III deficiency is a debilitating and often fatal disorder that can arise from mutations in complex III subunit genes or one of three known complex III assembly factors. The molecular cause for complex III deficiency in about half of cases, however, is unknown and there are likely many complex III assembly factors yet to be identified. Here, we used Massively Parallel Sequencing to identify a homozygous splicing mutation in the gene encoding Ubiquinol-Cytochrome c Reductase Complex Assembly Factor 2 (UQCC2) in a consanguineous Lebanese patient displaying complex III deficiency, severe intrauterine growth retardation, neonatal lactic acidosis and renal tubular dysfunction. We prove causality of the mutation via lentiviral correction studies in patient fibroblasts. Sequence-profile based orthology prediction shows UQCC2 is an ortholog of the Saccharomyces cerevisiae complex III assembly factor, Cbp6p, although its sequence has diverged substantially. Co-purification studies show that UQCC2 interacts with UQCC1, the predicted ortholog of the Cbp6p binding partner, Cbp3p. Fibroblasts from the patient with UQCC2 mutations have deficiency of UQCC1, while UQCC1-depleted cells have reduced levels of UQCC2 and complex III. We show that UQCC1 binds the newly synthesized mtDNA-encoded cytochrome b subunit of complex III and that UQCC2 patient fibroblasts have specific defects in the synthesis or stability of cytochrome b. This work reveals a new cause for complex III deficiency that can assist future patient diagnosis, and provides insight into human complex III assembly by establishing that UQCC1 and UQCC2 are complex III assembly factors participating in cytochrome b biogenesis.
Autosomal recessive cutis laxa type 2B (ARCL2B; OMIM # 612940) is a segmental progeroid disorder ... more Autosomal recessive cutis laxa type 2B (ARCL2B; OMIM # 612940) is a segmental progeroid disorder caused by mutations in PYCR1 encoding pyrroline-5-carboxylate reductase 1, which is part of the conserved proline de novo synthesis pathway. Here we describe 33 patients with PYCR1-related ARCL from 27 families with initial diagnoses varying between wrinkly skin syndrome, gerodermia osteodysplastica, De Barsy syndrome or more severe progeria syndromes. Given the difficult differential diagnosis of ARCL syndromes we performed a systematic comparison of clinical features of PYCR1-related ARCL. Intrauterine growth retardation, a characteristic triangular facial gestalt, psychomotor retardation, and hypotonia were the most relevant distinctive hallmarks of ARCL due to proline de novo synthesis defects. Corneal clouding or cataracts, athetoid movements, and finger contractures were rather rare features, but had a high predictive value. In our cohort we identified 20 different PYCR1 mutations of which seven were novel. Most of the mutations accumulated in exons 4 to 6. Missense alterations of highly conserved residues were most frequent followed by splice site changes and a single nonsense mutation. j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / y m g m e
Dysfunction of complex I (NADH:ubiquinone oxidoreductase; CI), the largest enzyme of the oxidativ... more Dysfunction of complex I (NADH:ubiquinone oxidoreductase; CI), the largest enzyme of the oxidative phosphorylation (OXPHOS) system, often results in severe neuromuscular disorders and early childhood death. Mutations in its seven mitochondrial and 38 nuclear DNA-encoded structural components can only partly explain these deWciencies. Recently, CI assembly chaperones NDUFAF1 and B17.2L were linked to CI deWciency, but it is still unclear by which mechanism. To better understand their requirement during assembly we have studied their presence in CI subcomplexes in a cohort of CI deWcient patients using one-and two-dimensional blue-native PAGE. This analysis revealed distinct diVerences between their associations to subcomplexes in diVerent patients. B17.2L occurred in a 830 kDa subcomplex speciWcally in patients with mutations in subunits NDUFV1 and NDUFS4. Contrasting with this seemingly speciWc requirement, the previously described NDUFAF1 association to 500-850 kDa intermediates did not appear to be related to the nature and severity of the CI assembly defect. Surprisingly, even in the absence of assembly intermediates in a patient harboring a mutation in translation elongation factor G1 (EFG1), NDUFAF1 remained associated to the 500-850 kDa subcomplexes. These Wndings illustrate the diVerence in mechanism between B17.2L and NDUFAF1 and suggest that the involvement of NDUFAF1 in the assembly process could be indirect rather than direct via the binding to assembly intermediates.
We describe a novel mitochondrial ND2 mutation (T4681C) in a patient presenting with Leigh Syndro... more We describe a novel mitochondrial ND2 mutation (T4681C) in a patient presenting with Leigh Syndrome. Biochemical analyses revealed a low isolated complex I activity in patient's fibroblasts, blood and skeletal muscle. Mutant transmitochondrial cybrid clones retained the specific complex I defect, demonstrating the mitochondrial genetic origin of the disease. The mutation leads to a L71P substitution at an evolutionary conserved amino acid stretch. By two-dimensional blue native electrophoresis (2D-BN-SDS-PAGE), decreased complex I levels were observed together with an accumulation of specific assembly intermediates, suggesting that the mutation disturbs the complex I assembly pathway.
Mitochondria rely on their own translation system, with the mitochondrial ribosome (mitoribosome)... more Mitochondria rely on their own translation system, with the mitochondrial ribosome (mitoribosome) as its central component, for the synthesis of 13 proteins of the oxidative phosphorylation system. Mitoribosomes have undergone major remodeling during their evolution. However, a comprehensive study of the evolution of the mitoribosomal proteome remains to be established. Such a study also bears relevance for the potential identification of genes that cause mitochondrial dysfunction in human. The aim of the present study is therefore twofold, from an evolutionary and a disease point of view: (1) gain insight into the evolution of the mitoribosome and its protein content in various eukaryotic species; (2) prioritize mitochondrial ribosomal proteins (MRPs) as candidate genes for their involvement in mitochondrial disease.
Uploads
Papers by Leo Nijtmans