The gene coding for the pneumococcal DNA adenine methylase that recognizes the sequence 5'-GATC-3... more The gene coding for the pneumococcal DNA adenine methylase that recognizes the sequence 5'-GATC-3' was cloned in a strain of Streptococcus pneumoniae that lacked both restriction endonucleases DpnI and DpnII. The gene was cloned as a 3.7-kilobase fragment of chromosomal DNA from a DpnII-containing strain inserted in both possible orientations in the multicopy plasmid vector pMP5 to give recombinant plasmids pMP8 and pMP10. Recombinant plasmids were selected by their resistance to DpnII cleavage. Cells carrying the recombinant plasmids modified phage in vivo so that it was restricted by DpnIbut not DpnII-containing hosts. They also showed levels of DNA methylase activity five times higher than that in cells of the original DpnII strain. No DpnII activity was observed in the clones; therefore, it was concluded that the insert did not contain an intact DpnII endonuclease gene and that methylation of host DNA did not turn on a latent form of the gene.
In these retrospective comments I hope to accomplish sev- eral objectives. I shall briefly review... more In these retrospective comments I hope to accomplish sev- eral objectives. I shall briefly review the early history of bac- terial transformation, with an emphasis on breakthroughs and personalities. Then, I shall describe my own role in the devel- opment of the field with its curious dependence on the inter- play of rational experimentation and serendipity. In this con- text,
A method is disclosed for cloning the gene which encodes a DNA polymerase-exonuclease of Streptoc... more A method is disclosed for cloning the gene which encodes a DNA polymerase-exonuclease of Streptococcus pneumoniae. Plasmid pSM22, the vector containing the pneumocccal polA gene, facilitates the expression of 50-fold greater amounts of the PolI enzyme.
The cellular localization of enzymes in Diplococcus pneumoniae was examined by fractionation of s... more The cellular localization of enzymes in Diplococcus pneumoniae was examined by fractionation of spheroplasts. A deoxyribonuclease implicated in the entry of deoxyribonucleic acid (DNA) into the cell during genetic transformation was located in the cell membrane. This enzyme, the major endonuclease of the cell (endonuclease I), which is necessary for the conversion of donor DNA to single strands inside the cell and oligonucleotides outside, thus could act at the cell surface. Another enzyme, the cell wall lysin (autolysin), was also found in the membrane fraction. Other enzymes, including amylomaltase, two exonucleases, an adenosine triphosphate-dependent deoxyribonuclease, and a restriction type endonuclease, were located in the cytosol within the cell. None of the enzymes examined were predominantly periplasmic in location. Spheroplasts were obtained spontaneously on incubation of pneumococcal cells in concentrated sugar solutions. The autolytic enzyme appears to be involved in this process. Cells that were physiologically competent to take up DNA formed osmotically sensitive spheroplasts two to three times faster than cells that were not in the competent state. Although some genetically incompetent mutants also formed spheroplasts more slowly, other such mutants formed them at the faster rate.
Mutants of Diplococcus pneumoniae that lacked the two major deoxyribonucleases of the cell-one an... more Mutants of Diplococcus pneumoniae that lacked the two major deoxyribonucleases of the cell-one an endonuclease, the other an exonuclease preferentially active on native deoxyribonucleic acid (DNA)-were obtained. The development of a method for detecting mutant colonies, based on the binding of methyl green to DNA, facilitated isolation of the mutants. Neither enzyme was essential for growth of the cells, for repair of ultraviolet damage, or for any phase of DNAmediated transformation. Residual deoxyribonuclease activity in the double mutant corresponded to an exonuclease, approximately one-fifth as active as the major exonuclease, that attacked native and denatured DNA equally well. This activity appeared to be associated with the DNA-polymerase enzyme. A mutant that apparently lacked a cell wall lytic enzyme was also fully transformable. A mutant strain that was four times more sensitive to ultraviolet light than the wild type also transformed normally. Recipient cells of this strain were deficient in the repair of ultraviolet-irradiated transforming DNA. Mutants were found which, unlike the wild type, integrated donor markers only with high efficiency, thereby indicating that a particular cellular component that is susceptible to loss by mutation, such as an enzyme, is responsible for low integration efficiency.
A mutant of Diplococcus pneumoniae that apparently does not require activator can become competen... more A mutant of Diplococcus pneumoniae that apparently does not require activator can become competent for uptake of deoxyribonucleic acid (DNA) when grown in dilute cultures or in the presence of trypsin. Development of competence in both mutant and wild strains is temperature dependent, being 10-fold greater at 30 C than at 37 C. Induction of competence on a shift from 37 to 30 C requires protein synthesis and the presence of Mg(2+) and Ca(2+); uptake of DNA does not require protein synthesis. Competence decays exponentially at higher temperatures. As well as taking up DNA, competent cells release oligonucleotide fragments of donor DNA in the medium external to the cells. Normal strains release fragments comparable in amount to the DNA taken up; but, in a mutant selected for inability to degrade DNA in agar, the amount of fragments formed external to the cells is only 40% of DNA uptake. Requirements for external deoxyribonuclease action are identical to those for DNA uptake: prior dev...
Transformation and cloning of the DpnI and DpnII endonuclease genes has clarified the genetic bas... more Transformation and cloning of the DpnI and DpnII endonuclease genes has clarified the genetic basis of the two restriction systems. Molecular cloning was carried out in the Gram-positive S. pneumoniae host/vector system. Cloned chromosomal fragments from both DpnI- and DpnII-producing strains were subjected to nucleotide sequence determination and were used as probes for DNA hybridization analysis. It was shown that the restriction enzyme phenotype of S. pneumoniae depended on an intercellular genetic cassette mechanism. In this review some aspects of the evolution of restriction systems in S. pneumoniae and other bacterial will be discussed. 42 refs., 7 figs., 1 tab.
Although a number of bacterial species are naturally transformable, that is, their cells are able... more Although a number of bacterial species are naturally transformable, that is, their cells are able to take up external DNA in substantial amounts and integrate it into the chromosome without artificial manipulation of the cell surface, Streptococcus pneumoniae, the first species in which this phenomenon was detected, remains a prototype of such transformation. Cells of S. pneumonias also contain potent restriction endonucleases able to severely restrict DNA introduced during viral infection. Our current understanding of the genetic basis of the complementary DpnI and DpnII restriction systems and of the biochemistry of their component enzymes are briefly reviewed. The manner in which these enzymes impinge on the transfer of chromosomal genes and of plasmeds will be examined in detail. It will be seen that far from acting against foreign DNA in general, the restriction systems seem to be designed to exclude only infecting viral DNA The presence of complementary restriction systems in ...
The gene coding for the pneumococcal DNA adenine methylase that recognizes the sequence 5'-GATC-3... more The gene coding for the pneumococcal DNA adenine methylase that recognizes the sequence 5'-GATC-3' was cloned in a strain of Streptococcus pneumoniae that lacked both restriction endonucleases DpnI and DpnII. The gene was cloned as a 3.7-kilobase fragment of chromosomal DNA from a DpnII-containing strain inserted in both possible orientations in the multicopy plasmid vector pMP5 to give recombinant plasmids pMP8 and pMP10. Recombinant plasmids were selected by their resistance to DpnII cleavage. Cells carrying the recombinant plasmids modified phage in vivo so that it was restricted by DpnIbut not DpnII-containing hosts. They also showed levels of DNA methylase activity five times higher than that in cells of the original DpnII strain. No DpnII activity was observed in the clones; therefore, it was concluded that the insert did not contain an intact DpnII endonuclease gene and that methylation of host DNA did not turn on a latent form of the gene.
In these retrospective comments I hope to accomplish sev- eral objectives. I shall briefly review... more In these retrospective comments I hope to accomplish sev- eral objectives. I shall briefly review the early history of bac- terial transformation, with an emphasis on breakthroughs and personalities. Then, I shall describe my own role in the devel- opment of the field with its curious dependence on the inter- play of rational experimentation and serendipity. In this con- text,
A method is disclosed for cloning the gene which encodes a DNA polymerase-exonuclease of Streptoc... more A method is disclosed for cloning the gene which encodes a DNA polymerase-exonuclease of Streptococcus pneumoniae. Plasmid pSM22, the vector containing the pneumocccal polA gene, facilitates the expression of 50-fold greater amounts of the PolI enzyme.
The cellular localization of enzymes in Diplococcus pneumoniae was examined by fractionation of s... more The cellular localization of enzymes in Diplococcus pneumoniae was examined by fractionation of spheroplasts. A deoxyribonuclease implicated in the entry of deoxyribonucleic acid (DNA) into the cell during genetic transformation was located in the cell membrane. This enzyme, the major endonuclease of the cell (endonuclease I), which is necessary for the conversion of donor DNA to single strands inside the cell and oligonucleotides outside, thus could act at the cell surface. Another enzyme, the cell wall lysin (autolysin), was also found in the membrane fraction. Other enzymes, including amylomaltase, two exonucleases, an adenosine triphosphate-dependent deoxyribonuclease, and a restriction type endonuclease, were located in the cytosol within the cell. None of the enzymes examined were predominantly periplasmic in location. Spheroplasts were obtained spontaneously on incubation of pneumococcal cells in concentrated sugar solutions. The autolytic enzyme appears to be involved in this process. Cells that were physiologically competent to take up DNA formed osmotically sensitive spheroplasts two to three times faster than cells that were not in the competent state. Although some genetically incompetent mutants also formed spheroplasts more slowly, other such mutants formed them at the faster rate.
Mutants of Diplococcus pneumoniae that lacked the two major deoxyribonucleases of the cell-one an... more Mutants of Diplococcus pneumoniae that lacked the two major deoxyribonucleases of the cell-one an endonuclease, the other an exonuclease preferentially active on native deoxyribonucleic acid (DNA)-were obtained. The development of a method for detecting mutant colonies, based on the binding of methyl green to DNA, facilitated isolation of the mutants. Neither enzyme was essential for growth of the cells, for repair of ultraviolet damage, or for any phase of DNAmediated transformation. Residual deoxyribonuclease activity in the double mutant corresponded to an exonuclease, approximately one-fifth as active as the major exonuclease, that attacked native and denatured DNA equally well. This activity appeared to be associated with the DNA-polymerase enzyme. A mutant that apparently lacked a cell wall lytic enzyme was also fully transformable. A mutant strain that was four times more sensitive to ultraviolet light than the wild type also transformed normally. Recipient cells of this strain were deficient in the repair of ultraviolet-irradiated transforming DNA. Mutants were found which, unlike the wild type, integrated donor markers only with high efficiency, thereby indicating that a particular cellular component that is susceptible to loss by mutation, such as an enzyme, is responsible for low integration efficiency.
A mutant of Diplococcus pneumoniae that apparently does not require activator can become competen... more A mutant of Diplococcus pneumoniae that apparently does not require activator can become competent for uptake of deoxyribonucleic acid (DNA) when grown in dilute cultures or in the presence of trypsin. Development of competence in both mutant and wild strains is temperature dependent, being 10-fold greater at 30 C than at 37 C. Induction of competence on a shift from 37 to 30 C requires protein synthesis and the presence of Mg(2+) and Ca(2+); uptake of DNA does not require protein synthesis. Competence decays exponentially at higher temperatures. As well as taking up DNA, competent cells release oligonucleotide fragments of donor DNA in the medium external to the cells. Normal strains release fragments comparable in amount to the DNA taken up; but, in a mutant selected for inability to degrade DNA in agar, the amount of fragments formed external to the cells is only 40% of DNA uptake. Requirements for external deoxyribonuclease action are identical to those for DNA uptake: prior dev...
Transformation and cloning of the DpnI and DpnII endonuclease genes has clarified the genetic bas... more Transformation and cloning of the DpnI and DpnII endonuclease genes has clarified the genetic basis of the two restriction systems. Molecular cloning was carried out in the Gram-positive S. pneumoniae host/vector system. Cloned chromosomal fragments from both DpnI- and DpnII-producing strains were subjected to nucleotide sequence determination and were used as probes for DNA hybridization analysis. It was shown that the restriction enzyme phenotype of S. pneumoniae depended on an intercellular genetic cassette mechanism. In this review some aspects of the evolution of restriction systems in S. pneumoniae and other bacterial will be discussed. 42 refs., 7 figs., 1 tab.
Although a number of bacterial species are naturally transformable, that is, their cells are able... more Although a number of bacterial species are naturally transformable, that is, their cells are able to take up external DNA in substantial amounts and integrate it into the chromosome without artificial manipulation of the cell surface, Streptococcus pneumoniae, the first species in which this phenomenon was detected, remains a prototype of such transformation. Cells of S. pneumonias also contain potent restriction endonucleases able to severely restrict DNA introduced during viral infection. Our current understanding of the genetic basis of the complementary DpnI and DpnII restriction systems and of the biochemistry of their component enzymes are briefly reviewed. The manner in which these enzymes impinge on the transfer of chromosomal genes and of plasmeds will be examined in detail. It will be seen that far from acting against foreign DNA in general, the restriction systems seem to be designed to exclude only infecting viral DNA The presence of complementary restriction systems in ...
Uploads
Papers by Sanford Lacks