Papers by Kellye Eversole
Israel J Plant Sci, 2007
... tauschiiD-Genome projectLed by J. Dvorak, B. Gill, and O. Anderson (UC-Davis, KSU, and US... more ... tauschiiD-Genome projectLed by J. Dvorak, B. Gill, and O. Anderson (UC-Davis, KSU, and USDA-ARS, re-spectively), this project, submitted to the US National Science Foundation, will complete the Ae. ... 5DLed by H. Budak (Sabanci University, Turkey), this project, to ...
Phytopathology, Jun 1, 2003
ABSTRACT Plant-associated microorganisms are critical to agricultural and food security and are k... more ABSTRACT Plant-associated microorganisms are critical to agricultural and food security and are key components in maintaining the balance of our ecosystems. Some of these diverse microbes, which include viruses, bacteria, oomycetes, fungi, and nematodes, cause plant diseases, whereas others prevent diseases or enhance plant growth. Despite their importance, we know little about them on a genomic level. To intervene in disease and understand the basis of biological control or symbiotic relationships, a concerted and coordinated genomic analysis of these microbes is essential. Genome analysis, in this context, refers to the structural and functional analysis of the microbe DNA including the genes, the proteins encoded by those genes, as well as noncoding sequences involved in genome dynamics and function. The ultimate emphasis is on understanding genomic functions involved in plant associations. Members of The American Phytopathological Society (APS) developed a prioritized list of plant-associated microbes for genome analysis. With this list as a foundation for discussions, a Workshop on Genomic Analysis of Plant-Associated Microorganisms was held in Washington, D.C., on 9 to 11 April 2002. The workshop was organized by the Public Policy Board of APS, and was funded by the Department of Energy (DOE), the National Science Foundation (NSF), U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), and USDA-National Research Initiatives (USDA-NRI). The workshop included academic, industrial, and governmental experts from the genomics and microbial research communities and observers from the federal funding agencies. After reviewing current and near-term technologies, workshop participants proposed a comprehensive, international initiative to obtain the genomic information needed to understand these important microbes and their interactions with host plants and the environment. Specifically, the recommendations call for a 5-year, $500 million international public effort for genome analysis of plant-associated microbes. The goals are to (i) obtain genome sequence information for several representative groups of microbes; (ii) identify and determine function for the genes/proteins and other genomic elements involved in plant-microbe interactions; (iii) develop and implement standardized bioinformatic tools and a database system that is applicable across all microbes; and (iv) educate and train scientists with skills and knowledge of biological and computational sciences who will apply the information to the protection of our food sources and environment.
Genome Biology, 2015
Background: Because of its size, allohexaploid nature, and high repeat content, the bread wheat g... more Background: Because of its size, allohexaploid nature, and high repeat content, the bread wheat genome is a good model to study the impact of the genome structure on gene organization, function, and regulation. However, because of the lack of a reference genome sequence, such studies have long been hampered and our knowledge of the wheat gene space is still limited. The access to the reference sequence of the wheat chromosome 3B provided us with an opportunity to study the wheat transcriptome and its relationships to genome and gene structure at a level that has never been reached before. Results: By combining this sequence with RNA-seq data, we construct a fine transcriptome map of the chromosome 3B. More than 8,800 transcription sites are identified, that are distributed throughout the entire chromosome. Expression level, expression breadth, alternative splicing as well as several structural features of genes, including transcript length, number of exons, and cumulative intron length are investigated. Our analysis reveals a non-monotonic relationship between gene expression and structure and leads to the hypothesis that gene structure is determined by its function, whereas gene expression is subject to energetic cost. Moreover, we observe a recombination-based partitioning at the gene structure and function level.
Science (New York, N.Y.), Jan 18, 2014
The allohexaploid bread wheat genome consists of three closely related subgenomes (A, B, and D), ... more The allohexaploid bread wheat genome consists of three closely related subgenomes (A, B, and D), but a clear understanding of their phylogenetic history has been lacking. We used genome assemblies of bread wheat and five diploid relatives to analyze genome-wide samples of gene trees, as well as to estimate evolutionary relatedness and divergence times. We show that the A and B genomes diverged from a common ancestor ~7 million years ago and that these genomes gave rise to the D genome through homoploid hybrid speciation 1 to 2 million years later. Our findings imply that the present-day bread wheat genome is a product of multiple rounds of hybrid speciation (homoploid and polyploid) and lay the foundation for a new framework for understanding the wheat genome as a multilevel phylogenetic mosaic.
Science (New York, N.Y.), Jan 18, 2014
Comparative and Functional Genomics, 2005
The Swine Genome Sequencing Consortium (SGSC) was formed in September 2003 by academic, governmen... more The Swine Genome Sequencing Consortium (SGSC) was formed in September 2003 by academic, government and industry representatives to provide international coordination for sequencing the pig genome. The SGSC's mission is to advance biomedical research for animal production and health by the development of DNAbased tools and products resulting from the sequencing of the swine genome. During the past 2 years, the SGSC has met bi-annually to develop a strategic roadmap for creating the required scientific resources, to integrate existing physical maps, and to create a sequencing strategy that captured international participation and a broad funding base. During the past year, SGSC members have integrated their respective physical mapping data with the goal of creating a minimal tiling path (MTP) that will be used as the sequencing template. During the recent Plant and Animal Genome meeting (January 16, 2005 San Diego, CA), presentations demonstrated that a human-pig comparative map has been completed, BAC fingerprint contigs (FPC) for each of the autosomes and X chromosome have been constructed and that BAC end-sequencing has permitted, through BLAST analysis and RH-mapping, anchoring of the contigs. Thus, significant progress has been made towards the creation of a MTP. In addition, whole-genome (WG) shotgun libraries have been constructed and are currently being sequenced in various laboratories around the globe. Thus, a hybrid sequencing approach in which 3× coverage of BACs comprising the MTP and 3× of the WG-shotgun libraries will be used to develop a draft 6× coverage of the pig genome.
Genomics of Plant Genetic Resources, 2013
Scientific Reports, 2014
The need for higher yielding and better-adapted crop plants for feeding the world's rapidly growi... more The need for higher yielding and better-adapted crop plants for feeding the world's rapidly growing population has raised the question of how to systematically utilize large genebank collections with their wide range of largely untouched genetic diversity. Phenotypic data that has been recorded for decades during various rounds of seed multiplication provides a rich source of information. Their usefulness has remained limited though, due to various biases induced by conservation management over time or changing environmental conditions. Here, we present a powerful procedure that permits an unbiased trait-based selection of plant samples based on such phenotypic data. Applying this technique to the wheat collection of one of the largest genebanks worldwide, we identified groups of plant samples displaying contrasting phenotypes for selected traits. As a proof of concept for our discovery pipeline, we resequenced the entire major but conserved flowering time locus Ppd-D1 in just a few such selected wheat samples -and nearly doubled the number of hitherto known alleles. C limate change and the rapidly growing human population trigger the demand for significantly improved crop plants 1-7 . At present, new plant varieties are mainly developed through the reshuffling of alleles present in the elite gene pool (crossing the best -hoping for the best) resulting in a more or less constant repertoire of alleles or even an erosion of genetic diversity. As a result, genetic gains have gradually slowed for most of the major crop species including wheat 8,9 . As a result, the relative increase in grain yield of wheat (Triticum aestivum L.), the most dominant crop species with a global acreage of 217 million ha (http://faostat. fao.org/), has fallen short of the global population growth rate in many parts of the world.
Genetics and Genomics of the Triticeae, 2009
A high quality reference genome sequence is a prerequisite resource for accessing any gene, drivi... more A high quality reference genome sequence is a prerequisite resource for accessing any gene, driving genomics-based approaches to systems biology, and for efficient exploitation of natural and induced genetic diversity of an organism. Wheat and barley possess genomes of a size that was long presumed to be not amenable for whole genome sequencing. So far, only limited genomic sequencing of
Trends in Plant Science, 2011
Science, 2008
The following resources related to this article are available online at
Science, 2009
... Seunghee Lee,; Jinke Lin,; Zeljko Dujmic,; Woojin Kim,; Jayson Talag,; Andrea Zuccolo,; Chuan... more ... Seunghee Lee,; Jinke Lin,; Zeljko Dujmic,; Woojin Kim,; Jayson Talag,; Andrea Zuccolo,; Chuanzhu Fan,; Aswathy Sebastian,; Melissa Kramer,; Lori Spiegel,; ... Sunita Kumari,; Ben Faga,; Michael J. Levy,; Linda McMahan,; Peter Van Buren,; Matthew W. Vaughn,; Kai Ying,; Cheng-...
PLoS ONE, 2013
Structural changes of chromosomes are a primary mechanism of genome rearrangement over the course... more Structural changes of chromosomes are a primary mechanism of genome rearrangement over the course of evolution and detailed knowledge of such changes in a given species and its close relatives should increase the efficiency and precision of chromosome engineering in crop improvement. We have identified sequences bordering each of the main translocation and inversion breakpoints on chromosomes 4A, 5A and 7B of the modern bread wheat genome. The locations of these breakpoints allow, for the first time, a detailed description of the evolutionary origins of these chromosomes at the gene level. Results from this study also demonstrate that, although the strategy of exploiting sorted chromosome arms has dramatically simplified the efforts of wheat genome sequencing, simultaneous analysis of sequences from homoeologous and non-homoeologous chromosomes is essential in understanding the origins of DNA sequences in polyploid species.
Phytopathology, 2003
ABSTRACT Plant-associated microorganisms are critical to agricultural and food security and are k... more ABSTRACT Plant-associated microorganisms are critical to agricultural and food security and are key components in maintaining the balance of our ecosystems. Some of these diverse microbes, which include viruses, bacteria, oomycetes, fungi, and nematodes, cause plant diseases, whereas others prevent diseases or enhance plant growth. Despite their importance, we know little about them on a genomic level. To intervene in disease and understand the basis of biological control or symbiotic relationships, a concerted and coordinated genomic analysis of these microbes is essential. Genome analysis, in this context, refers to the structural and functional analysis of the microbe DNA including the genes, the proteins encoded by those genes, as well as noncoding sequences involved in genome dynamics and function. The ultimate emphasis is on understanding genomic functions involved in plant associations. Members of The American Phytopathological Society (APS) developed a prioritized list of plant-associated microbes for genome analysis. With this list as a foundation for discussions, a Workshop on Genomic Analysis of Plant-Associated Microorganisms was held in Washington, D.C., on 9 to 11 April 2002. The workshop was organized by the Public Policy Board of APS, and was funded by the Department of Energy (DOE), the National Science Foundation (NSF), U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), and USDA-National Research Initiatives (USDA-NRI). The workshop included academic, industrial, and governmental experts from the genomics and microbial research communities and observers from the federal funding agencies. After reviewing current and near-term technologies, workshop participants proposed a comprehensive, international initiative to obtain the genomic information needed to understand these important microbes and their interactions with host plants and the environment. Specifically, the recommendations call for a 5-year, $500 million international public effort for genome analysis of plant-associated microbes. The goals are to (i) obtain genome sequence information for several representative groups of microbes; (ii) identify and determine function for the genes/proteins and other genomic elements involved in plant-microbe interactions; (iii) develop and implement standardized bioinformatic tools and a database system that is applicable across all microbes; and (iv) educate and train scientists with skills and knowledge of biological and computational sciences who will apply the information to the protection of our food sources and environment.
Phytopathology, 2013
Recent efforts to address concerns about microbial contamination of food plants and resulting foo... more Recent efforts to address concerns about microbial contamination of food plants and resulting foodborne illness have prompted new collaboration and interactions between the scientific communities of plant pathology and food safety. This article provides perspectives from scientists of both disciplines and presents selected research results and concepts that highlight existing and possible future synergisms for audiences of both disciplines. Plant pathology is a complex discipline that encompasses studies of the dissemination, colonization, and infection of plants by microbes such as bacteria, viruses, fungi, and oomycetes. Plant pathologists study plant diseases as well as host plant defense responses and disease management strategies with the goal of minimizing disease occurrences and impacts. Repeated outbreaks of human illness attributed to the contamination of fresh produce, nuts and seeds, and other plant-derived foods by human enteric pathogens such as Shiga toxin-producing Escherichia coli and Salmonella spp. have led some plant pathologists to broaden the application of their science in the past two decades, to address problems of human pathogens on plants (HPOPs). Food microbiology, which began with the study of microbes that spoil foods and those that are critical to produce food, now also focuses study on how foods become contaminated with pathogens and how this can be controlled or prevented. Thus, at the same time, public health researchers and food microbiologists have become more concerned about plant-microbe interactions before and after harvest. New collaborations are forming between members of the plant pathology and food safety communities, leading to enhanced research capacity and greater understanding of the issues for which research is needed. The two communities use somewhat different vocabularies and conceptual models. For example, traditional plant pathology concepts such as the disease triangle and the disease cycle can help to define cross-over issues that pertain also to HPOP research, and can suggest logical strategies for minimizing the risk of microbial contamination. Continued interactions and communication among these two disciplinary communities is essential and can be achieved by the creation of an interdisciplinary research coordination network. We hope that this article, an introduction to the multidisciplinary HPOP arena, will be useful to researchers in many related fields.
Science (New York, N.Y.), Jan 24, 2009
The imprints of domestication and breed development on the genomes of livestock likely differ fro... more The imprints of domestication and breed development on the genomes of livestock likely differ from those of companion animals. A deep draft sequence assembly of shotgun reads from a single Hereford female and comparative sequences sampled from six additional breeds were used to develop probes to interrogate 37,470 single-nucleotide polymorphisms (SNPs) in 497 cattle from 19 geographically and biologically diverse breeds. These data show that cattle have undergone a rapid recent decrease in effective population size from a very large ancestral population, possibly due to bottlenecks associated with domestication, selection, and breed formation. Domestication and artificial selection appear to have left detectable signatures of selection within the cattle genome, yet the current levels of diversity within breeds are at least as great as exists within humans.
Functional & Integrative Genomics, 2012
The genomic resources of small grain cereals that include some of the most important crop species... more The genomic resources of small grain cereals that include some of the most important crop species such as wheat, barley, and rye are attaining a level of completion that now is contributing to new structural and functional studies as well as refining molecular marker development and mapping strategies for increasing the efficiency of breeding processes. The integration of new efforts to obtain reference sequences in bread wheat and barley, in particular, is accelerating the acquisition and interpretation of genome-level analyses in both of these major crops.
Uploads
Papers by Kellye Eversole