Material science advancements have resulted in the development of high-strength concrete and stee... more Material science advancements have resulted in the development of high-strength concrete and steel reinforcement, allowing more efficient and stable buildings against natural and manmade disasters. Increasing security concerns and the potential threat from terrorist activities have led to the safety and resilience of structures against blast loads in modern construction. The present study investigates the performance of reinforced concrete shear walls in mitigating blast-induced vibrations. The study examines four different reinforced concrete buildings based on their shapes, namely square, rectangular, C-shaped, and L-shaped, to understand the blast behaviours with and without shear walls. The study presents a methodology to protect the regular and irregular buildings equipped with shear walls against blast loads at varying standoff distances of 100 m, 200 m, 300 m, and 400 m, respectively. The study also compares the efficiency of passive control dampers and shear walls in enhanci...
Journal of Vibration Engineering & Technologies, 2018
Purpose The paper is an attempt to evaluate the efficiency of passive control techniques such as ... more Purpose The paper is an attempt to evaluate the efficiency of passive control techniques such as base isolation system (e.g. Lead/Rubber Bearing) and fluid viscous dampers subjected to earthquake ground motions and underground blast-induced vibrations. Two moment-resisting steel frame buildings are analyzed to evaluate the structural responses under dynamic excitations. The effect of vertical irregularity on the performance of passive control techniques in mitigating the responses of the building is also studied. Methods Non-linear dynamic analysis has been conducted on regular and irregular steel structures. The study investigates the effect of isolation period on the structural responses. The isolators are designed based on the design procedures developed by various researchers. The technical specifications of fluid viscous dampers have been selected from M/s Taylor Devices, USA. Results The structural responses and energy dissipated by these control techniques is evaluated and a comparative study is also carried out amongst control techniques under blast and seismic excitations. Conclusions Both the selected passive control techniques have proved to be very effective in reducing the structural responses and forces induced in the building owing to ground-induced vibration.
Material science advancements have resulted in the development of high-strength concrete and stee... more Material science advancements have resulted in the development of high-strength concrete and steel reinforcement, allowing more efficient and stable buildings against natural and manmade disasters. Increasing security concerns and the potential threat from terrorist activities have led to the safety and resilience of structures against blast loads in modern construction. The present study investigates the performance of reinforced concrete shear walls in mitigating blast-induced vibrations. The study examines four different reinforced concrete buildings based on their shapes, namely square, rectangular, C-shaped, and L-shaped, to understand the blast behaviours with and without shear walls. The study presents a methodology to protect the regular and irregular buildings equipped with shear walls against blast loads at varying standoff distances of 100 m, 200 m, 300 m, and 400 m, respectively. The study also compares the efficiency of passive control dampers and shear walls in enhanci...
Journal of Vibration Engineering & Technologies, 2018
Purpose The paper is an attempt to evaluate the efficiency of passive control techniques such as ... more Purpose The paper is an attempt to evaluate the efficiency of passive control techniques such as base isolation system (e.g. Lead/Rubber Bearing) and fluid viscous dampers subjected to earthquake ground motions and underground blast-induced vibrations. Two moment-resisting steel frame buildings are analyzed to evaluate the structural responses under dynamic excitations. The effect of vertical irregularity on the performance of passive control techniques in mitigating the responses of the building is also studied. Methods Non-linear dynamic analysis has been conducted on regular and irregular steel structures. The study investigates the effect of isolation period on the structural responses. The isolators are designed based on the design procedures developed by various researchers. The technical specifications of fluid viscous dampers have been selected from M/s Taylor Devices, USA. Results The structural responses and energy dissipated by these control techniques is evaluated and a comparative study is also carried out amongst control techniques under blast and seismic excitations. Conclusions Both the selected passive control techniques have proved to be very effective in reducing the structural responses and forces induced in the building owing to ground-induced vibration.
Uploads
Papers by Zain Kangda