Molecular Therapy - Methods & Clinical Development, 2021
Vector-mediated mutagenesis remains a major safety concern for many gene therapy clinical protoco... more Vector-mediated mutagenesis remains a major safety concern for many gene therapy clinical protocols. Indeed, lentiviralbased gene therapy treatments of hematologic disease can result in oligoclonal blood reconstitution in the transduced cell graft. Specifically, clonal expansion of hematopoietic stem cells (HSCs) highly expressing HMGA2, a chromatin architectural factor found in many human cancers, is reported in patients undergoing gene therapy for hematologic diseases, raising concerns about the safety of these integrations. Here, we show for the first time in vivo multilineage and multiclonal expansion of non-human primate HSCs expressing a 3' UTR-truncated version of HMGA2 without evidence of any hematologic malignancy >7 years post-transplantation, which is significantly longer than most non-human gene therapy pre-clinical studies. This expansion is accompanied by an increase in HSC survival, cell cycle activation of downstream progenitors, and changes in gene expression led by the upregulation of IGF2BP2, a mRNA binding regulator of survival and proliferation. Thus, we conclude that prolonged ectopic expression of HMGA2 in hematopoietic progenitors is not sufficient to drive hematologic malignancy and is not an acute safety concern in lentiviralbased gene therapy clinical protocols.
Autologous gene therapy using lentiviral vectors (LVs) holds promise for treating monogenetic blo... more Autologous gene therapy using lentiviral vectors (LVs) holds promise for treating monogenetic blood diseases. However, clinical applications can be limited by suboptimal hematopoietic stem cell (HSC) transduction and insufficient quantities of available vector. We recently reported gene therapy for X-linked severe combined immunodeficiency using a protocol in which patient CD34 + cells were incubated with two successive transductions. Here we describe an improved protocol for LV delivery to CD34 + cells that simplifies product manipulation, reduces vector consumption and achieves greater vector copy number (VCN) of repopulating HSCs in mouse xenotransplantation assays. Notable findings include: 1) the VCN of CD34 + cells measured shortly after transduction did not always correlate with the VCN of repopulating HSCs after xenotransplantation; 2) single-step transduction at higher CD34 + cell concentrations (2-4x10 6 /ml) conserved LV without compromising HSC VCN; 3) poloxamer F108 (LentiBOOST) increased HSC VCN by 2-to 3-fold (average from 3 donors); 4) while LentiBOOST+prostaglandin E2 combination further increased VCN in vitro, the VCN observed in vivo were similar to LentiBOOST alone. 5
T cells engineered with chimeric antigen receptors (CARs) show great promise in the treatment of ... more T cells engineered with chimeric antigen receptors (CARs) show great promise in the treatment of some cancers. Modifying T cells to express CARs generally relies on T-cell transduction using viral vectors carrying a transgene, resulting in semi-random DNA integration within the T-cell genome. While this approach has proven successful and is used in generating the Food and Drug Administration (FDA, USA) approved B-lymphocyte antigen CD19-specific CAR T cells, it is possible the transgene could integrate into a locus that would lead to malignant transformation of the engineered T cells. In addition, manufacturing viral vectors is time-consuming and expensive. One way to overcome these challenges is site-specific gene integration, which can be achieved through clustered regularly interspaced short palindromic repeat (CRISPR) mediated editing and non-viral DNA, which serves as a template for homology-directed repair (HDR). This non-viral gene editing approach provides a rapid, highly sp...
BACKGROUND Allogeneic hematopoietic stem-cell transplantation for X-linked severe combined immuno... more BACKGROUND Allogeneic hematopoietic stem-cell transplantation for X-linked severe combined immunodeficiency (SCID-X1) often fails to reconstitute immunity associated with T cells, B cells, and natural killer (NK) cells when matched sibling donors are unavailable unless high-dose chemotherapy is given. In previous studies, autologous gene therapy with γ-retroviral vectors failed to reconstitute B-cell and NK-cell immunity and was complicated by vector-related leukemia. METHODS We performed a dual-center, phase 1-2 safety and efficacy study of a lentiviral vector to transfer IL2RG complementary DNA to bone marrow stem cells after lowexposure, targeted busulfan conditioning in eight infants with newly diagnosed SCID-X1. RESULTS Eight infants with SCID-X1 were followed for a median of 16.4 months. Bone marrow harvest, busulfan conditioning, and cell infusion had no unexpected side effects. In seven infants, the numbers of CD3+, CD4+, and naive CD4+ T cells and NK cells normalized by 3 to 4 months after infusion and were accompanied by vector marking in T cells, B cells, NK cells, myeloid cells, and bone marrow progenitors. The eighth infant had an insufficient T-cell count initially, but T cells developed in this infant after a boost of gene-corrected cells without busulfan conditioning. Previous infections cleared in all infants, and all continued to grow normally. IgM levels normalized in seven of the eight infants, of whom four discontinued intravenous immune globulin supplementation; three of these four infants had a response to vaccines. Vector insertion-site analysis was performed in seven infants and showed polyclonal patterns without clonal dominance in all seven. CONCLUSIONS Lentiviral vector gene therapy combined with low-exposure, targeted busulfan conditioning in infants with newly diagnosed SCID-X1 had low-grade acute toxic effects and resulted in multilineage engraftment of transduced cells, reconstitution of functional T cells and B cells, and normalization of NK-cell counts during a median follow-up of 16 months. (Funded by the American Lebanese Syrian Associated Charities and others; LVXSCID-ND ClinicalTrials.gov number, NCT01512888.
Molecular Therapy - Methods & Clinical Development, 2021
Vector-mediated mutagenesis remains a major safety concern for many gene therapy clinical protoco... more Vector-mediated mutagenesis remains a major safety concern for many gene therapy clinical protocols. Indeed, lentiviralbased gene therapy treatments of hematologic disease can result in oligoclonal blood reconstitution in the transduced cell graft. Specifically, clonal expansion of hematopoietic stem cells (HSCs) highly expressing HMGA2, a chromatin architectural factor found in many human cancers, is reported in patients undergoing gene therapy for hematologic diseases, raising concerns about the safety of these integrations. Here, we show for the first time in vivo multilineage and multiclonal expansion of non-human primate HSCs expressing a 3' UTR-truncated version of HMGA2 without evidence of any hematologic malignancy >7 years post-transplantation, which is significantly longer than most non-human gene therapy pre-clinical studies. This expansion is accompanied by an increase in HSC survival, cell cycle activation of downstream progenitors, and changes in gene expression led by the upregulation of IGF2BP2, a mRNA binding regulator of survival and proliferation. Thus, we conclude that prolonged ectopic expression of HMGA2 in hematopoietic progenitors is not sufficient to drive hematologic malignancy and is not an acute safety concern in lentiviralbased gene therapy clinical protocols.
Autologous gene therapy using lentiviral vectors (LVs) holds promise for treating monogenetic blo... more Autologous gene therapy using lentiviral vectors (LVs) holds promise for treating monogenetic blood diseases. However, clinical applications can be limited by suboptimal hematopoietic stem cell (HSC) transduction and insufficient quantities of available vector. We recently reported gene therapy for X-linked severe combined immunodeficiency using a protocol in which patient CD34 + cells were incubated with two successive transductions. Here we describe an improved protocol for LV delivery to CD34 + cells that simplifies product manipulation, reduces vector consumption and achieves greater vector copy number (VCN) of repopulating HSCs in mouse xenotransplantation assays. Notable findings include: 1) the VCN of CD34 + cells measured shortly after transduction did not always correlate with the VCN of repopulating HSCs after xenotransplantation; 2) single-step transduction at higher CD34 + cell concentrations (2-4x10 6 /ml) conserved LV without compromising HSC VCN; 3) poloxamer F108 (LentiBOOST) increased HSC VCN by 2-to 3-fold (average from 3 donors); 4) while LentiBOOST+prostaglandin E2 combination further increased VCN in vitro, the VCN observed in vivo were similar to LentiBOOST alone. 5
T cells engineered with chimeric antigen receptors (CARs) show great promise in the treatment of ... more T cells engineered with chimeric antigen receptors (CARs) show great promise in the treatment of some cancers. Modifying T cells to express CARs generally relies on T-cell transduction using viral vectors carrying a transgene, resulting in semi-random DNA integration within the T-cell genome. While this approach has proven successful and is used in generating the Food and Drug Administration (FDA, USA) approved B-lymphocyte antigen CD19-specific CAR T cells, it is possible the transgene could integrate into a locus that would lead to malignant transformation of the engineered T cells. In addition, manufacturing viral vectors is time-consuming and expensive. One way to overcome these challenges is site-specific gene integration, which can be achieved through clustered regularly interspaced short palindromic repeat (CRISPR) mediated editing and non-viral DNA, which serves as a template for homology-directed repair (HDR). This non-viral gene editing approach provides a rapid, highly sp...
BACKGROUND Allogeneic hematopoietic stem-cell transplantation for X-linked severe combined immuno... more BACKGROUND Allogeneic hematopoietic stem-cell transplantation for X-linked severe combined immunodeficiency (SCID-X1) often fails to reconstitute immunity associated with T cells, B cells, and natural killer (NK) cells when matched sibling donors are unavailable unless high-dose chemotherapy is given. In previous studies, autologous gene therapy with γ-retroviral vectors failed to reconstitute B-cell and NK-cell immunity and was complicated by vector-related leukemia. METHODS We performed a dual-center, phase 1-2 safety and efficacy study of a lentiviral vector to transfer IL2RG complementary DNA to bone marrow stem cells after lowexposure, targeted busulfan conditioning in eight infants with newly diagnosed SCID-X1. RESULTS Eight infants with SCID-X1 were followed for a median of 16.4 months. Bone marrow harvest, busulfan conditioning, and cell infusion had no unexpected side effects. In seven infants, the numbers of CD3+, CD4+, and naive CD4+ T cells and NK cells normalized by 3 to 4 months after infusion and were accompanied by vector marking in T cells, B cells, NK cells, myeloid cells, and bone marrow progenitors. The eighth infant had an insufficient T-cell count initially, but T cells developed in this infant after a boost of gene-corrected cells without busulfan conditioning. Previous infections cleared in all infants, and all continued to grow normally. IgM levels normalized in seven of the eight infants, of whom four discontinued intravenous immune globulin supplementation; three of these four infants had a response to vaccines. Vector insertion-site analysis was performed in seven infants and showed polyclonal patterns without clonal dominance in all seven. CONCLUSIONS Lentiviral vector gene therapy combined with low-exposure, targeted busulfan conditioning in infants with newly diagnosed SCID-X1 had low-grade acute toxic effects and resulted in multilineage engraftment of transduced cells, reconstitution of functional T cells and B cells, and normalization of NK-cell counts during a median follow-up of 16 months. (Funded by the American Lebanese Syrian Associated Charities and others; LVXSCID-ND ClinicalTrials.gov number, NCT01512888.
Uploads
Papers by Jose Condori