Cognitive dysfunction in depression is a prevalent and debilitating symptom that is poorly treate... more Cognitive dysfunction in depression is a prevalent and debilitating symptom that is poorly treated by the currently available pharmacotherapies. Research over the past decade has provided evidence for proinflammatory involvement in the neurobiology of depressive disorders and symptoms associated with these disorders, including aspects of memory dysfunction. Recent clinical studies implicate inflammation-related changes in kynurenine metabolism as a potential pathogenic factor in the development of a range of depressive symptoms, including deficits in cognition and memory. Additionally, preclinical work has demonstrated a number of mood-related depressive-like behaviors to be dependent on indoleamine 2,3-dioxygenase-1 (IDO1), the inflammation-induced rate-limiting enzyme of the kynurenine pathway. Here, we demonstrate in a mouse model, that peripheral administration of endotoxin induced a deficit in recognition memory. Mice deficient in IDO were protected from cognitive impairment. Furthermore, endotoxin-induced inflammation increased kynurenine metabolism within the perirhinal/entorhinal cortices, brain regions which have been implicated in recognition memory. A single peripheral injection of kynurenine, the metabolic product of IDO1, was sufficient to induce a deficit in recognition memory in both control and IDO null mice. Finally, kynurenine monooxygenase (KMO) deficient mice were also protected from inflammation-induced deficits on novel object recognition. These data implicate IDO-dependent neurotoxic kynurenine metabolism as a pathogenic factor for cognitive dysfunction in inflammation-induced depressive disorders and a potential novel target for the treatment of these disorders.
BACKGROUND: We have previously shown that use of an EC brush device in combination with the Rover... more BACKGROUND: We have previously shown that use of an EC brush device in combination with the Rovers Cervex-Brush (SurePath broom) offered no significant improvement in EC recovery. Here we determine if use of additional collection devices enhance the diagnostic utility of the SurePath Pap for gynecologic cytology. METHODS: After informed consent, 37 women ages 18-56 receiving their routine cervical examinations were randomized into four experimental groups. Each group was first sampled with the SurePath broom then immediately re-sampled with an additional collection device or devices. Group 1: Rover endocervix brush (n = 8). Group 2: Medscand CytoBrush Plus GT (n = 7). Group 3: Rover spatula + endocervix brush (n = 11). Group 4: Medscand spatula + CytoBrush Plus GT (n = 11). RESULTS: Examination of SurePath broom-collected cytology yielded the following abnormal diagnoses: atypia (n = 2), LSIL (n = 5) and HSIL (n = 3). Comparison of these diagnoses to those obtained from paired sampl...
The Journal of neuroscience : the official journal of the Society for Neuroscience, Jan 31, 2007
Acute hypoxia is experienced in an array of ailments and conditions, including asthma, chronic ob... more Acute hypoxia is experienced in an array of ailments and conditions, including asthma, chronic obstructive pulmonary disease, heart failure, sleep apnea, acute hypotension, and blast lung injury. Classically, infection activates the neuroimmune system, causing loss of interest in the social environment. We report that the non-infectious stimulus acute hypoxia triggers neuroimmune system activation (NSA), causing loss of interest in the social environment, and that recovery from hypoxia-induced NSA is impaired in a mouse model of type 2 diabetes. Importantly, recovery from the behavioral consequences of hypoxia-induced NSA was nearly ablated in MyD88 (myeloid differentiation factor 88) knock-out mice and in mice intracerebroventricularly administered the caspase-1 inhibitor ac-YVAD-CMK (ac-Tyr-Val-Asp-2,6-dimethylbenzoyloxymethylketone). Diabetic mice had prolonged recovery from NSA that could be halved by administration of subcutaneous interleukin-1 (IL-1) receptor antagonist (RA). ...
Type 2 diabetes (T2D) is associated with accelerated atherosclerosis, which accounts for approxim... more Type 2 diabetes (T2D) is associated with accelerated atherosclerosis, which accounts for approximately 75% of all diabetesrelated deaths. Here we investigate the link between diabetes and macrophage cholesteryl ester accumulation. When diabetic (db/db) mice are given cholesteryl ester intraperitoneally (IP), peritoneal macrophages (PerMWs) recovered from these animals showed a 58% increase in intracellular cholesteryl ester accumulation over PerMWs from heterozygote control (db/+) mice. Notably, PerMW fluid-phase endocytosis and large particle phagocytosis was equivalent in db/+and db/db mice. However, IP administration of CD36 and SR-A blocking antibodies led to 37% and 25% reductions in cholesteryl ester accumulation in PerMW. Finally, in order to determine if these scavenger receptors (SRs) were part of the mechanism responsible for the increased accumulation of cholesteryl esters observed in the diabetic mouse macrophages, receptor expression was quantified by flow cytometry. Importantly, db/db PerMWs showed a 43% increase in CD36 expression and an 80% increase in SR-A expression. Taken together, these data indicate that direct cholesteryl ester accumulation in mouse macrophages is mediated by CD36 and SR-A, and the magnitude of accumulation is increased in db/db macrophages due to increased scavenger receptor expression.
Background Transient stimulation of the innate immune system by an intraperitoneal injection of l... more Background Transient stimulation of the innate immune system by an intraperitoneal injection of lipopolysaccharide (LPS) activates peripheral and central expression of the tryptophan degrading enzyme indoleamine 2,3 dioxygenase (IDO) which mediates depressive-like behavior. It is unknown whether direct activation of the brain with LPS is sufficient to activate IDO and induce depressive-like behavior. Methods Sickness and depressive-like behavior in C57BL/6J mice were assessed by social exploration and the forced swim test, respectively. Expression of cytokines and IDO mRNA was measured by real-time RT-PCR and cytokine protein was measured by enzyme-linked immunosorbent assays (ELISAs). Enzymatic activity of IDO was estimated as the amount of kynurenine produced from tryptophan as determined by high pressure liquid chromatography (HPLC) with electrochemical detection. Results Intracerebroventricular (i.c.v.) administration of LPS (100 ng) increased steady-state transcripts of TNFα, I...
Chronic inflammation appears to play a critical role in type 2 diabetes and its complications. He... more Chronic inflammation appears to play a critical role in type 2 diabetes and its complications. Here we tested the hypothesis that this inflammatory dysregulation affects the IL-1β system and has functional consequences in the brain. Diabetic, db/db, and nondiabetic, db/+, mice were administered i.p. LPS, a potent cytokine inducer, at a dose of 100 μg/kg/mouse. db/db mouse innate immune-associated sickness behavior was 14.8, 33, 44.7, and 34% greater than that of db/+ mice at 2, 4, 8, and 12 h, respectively. When a fixed dose of LPS was used (5 μg/mouse), db/db mouse sickness was again enhanced 18.4, 22.2, and 14.5% at 4, 8, and 12 h as compared with db/+ mice. In diabetic mice, peritoneal macrophages produced more IL-1β in response to LPS, and peritoneal levels of IL-1β induced by LPS were increased. Importantly, IL-1R antagonist and type 2 IL-1 receptor (IL-1R2) failed to up-regulate in response to LPS in db/db mice. Finally, both peripheral and central administration of IL-1β, its...
Dysregulated inflammation is a complication of type 2 diabetes (T2D). In this study, we show that... more Dysregulated inflammation is a complication of type 2 diabetes (T2D). In this study, we show that augmented LPS-induced TNF-α production by resident peritoneal macrophages (PerMφ) in type 2 diabetic (db/db) mice is dependent on elevated glucose and requires p38 MAPK. Intraperitoneal LPS administered to db/db and nondiabetic (db/+) mice induced 3- and 4-fold more TNF-α in the peritoneum and serum, respectively, of db/db mice as compared with db/+ mice. Examination of the TLR-4/MD2 complex and CD14 expression showed no difference between db/db and db/+ PerMφ. Ex vivo stimulation of PerMφ with LPS produced a similar 3-fold increase in TNF-α production in db/db PerMφ when compared with db/+ PerMφ. PerMφ isolated from db/+ mice incubated in high glucose (4 g/L) medium for 12 h produced nearly 2-fold more TNF-α in response to LPS than PerMφ incubated in normal glucose medium (1 g/L). LPS-dependent stimulation of PI3K activity, ERK1/2 activation, and p38 kinase activity was greater in PerM...
We have shown previously that hyperinsulinemia inhibits interferon-␣-dependent activation of phos... more We have shown previously that hyperinsulinemia inhibits interferon-␣-dependent activation of phosphatidylinositol 3-kinase (PI3-kinase) through mammalian target of rapamycin (mTOR)-induced serine phosphorylation of insulin receptor substrate (IRS)-1. Here we report that chronic insulin and high glucose synergistically inhibit interleukin (IL)-4-dependent activation of PI3-kinase in macrophages via the mTOR pathway. Resident peritoneal macrophages (PerM⌽s) from diabetic (db/db) mice showed a 44% reduction in IRS-2-associated PI3-kinase activity stimulated by IL-4 compared with PerM⌽s from heterozygote (db/؉) control mice. IRS-2 from db/db mouse PerM⌽s also showed a 78% increase in Ser/Thr-Pro motif phosphorylation without a difference in IRS-2 mass. To investigate the mechanism of this PI3kinase inhibition, 12-O-tetradecanoylphorbol-13-acetate-matured U937 cells were treated chronically with insulin (1 nM, 18 h) and high glucose (4.5 g/liter, 48 h). In these cells, IL-4-stimulated IRS-2-associated PI3-kinase activity was reduced by 37.5%. Importantly, chronic insulin or high glucose alone did not impact IL-4-activated IRS-2-associated PI3-kinase. Chronic insulin ؉ high glucose did reduce IL-4-dependent IRS-2 tyrosine phosphorylation and p85 association by 54 and 37%, respectively, but did not effect IL-4-activated JAK/STAT signaling. When IRS-2 Ser/Thr-Pro motif phosphorylation was examined, chronic insulin ؉ high glucose resulted in a 92% increase in IRS-2 Ser/Thr-Pro motif phosphorylation without a change in IRS-2 mass. Pretreatment of matured U937 cells with rapamycin blocked chronic insulin ؉ high glucose-dependent IRS-2 Ser/Thr-Pro motif phosphorylation and restored IL-4-dependent IRS-2-associated PI3-kinase activity. Taken together these results indicate that IRS-2-dependent IL-4 signaling in macrophages is impaired in models of type 2 diabetes mellitus through a mechanism that relies on insulin/ glucose-dependent Ser/Thr-Pro motif serine phosphorylation mediated by the mTOR pathway.
During the past decade, the immune and endocrine systems have been discovered to interact in cont... more During the past decade, the immune and endocrine systems have been discovered to interact in controlling physiologic processes as diverse as cell growth and differentiation, metabolism, and even human and animal behavior. The interaction between these two major physiological systems is a bi-directional process. While it has been well documented that hormones, including prolactin (PRL), growth hormone (GH), insulin-like growth factor-I (IGF-I), and thyroid-stimulating hormone (TSH), regulate a variety of immune events, a great deal of data have accumulated supporting the notion that cytokines from the innate immune system also affect the neuroendocrine system. Communication between these two systems coordinates processes that are necessary to maintain homeostasis. Proinflammatory cytokines often act as negative regulatory signals that temper the action of hormones and growth factors. This system of 'checks and balances' is an active, ongoing process, even in healthy individuals. Dysregulation of this process has been implicated as a potential pathogenic factor in the development of co-morbid conditions associated with several chronic inflammatory diseases, including type 2 diabetes, cardiovascular disease, cerebrovascular disease, inflammatory bowel disease, rheumatoid arthritis, major depression and even normal aging. Over the past decade, research in our laboratory has focused on the ability of the major proinflammatory cytokines, tumor necrosis factor (TNF)α and interleukin (IL)-1β, to induce a state of IGF resistance. This review will highlight these and other new findings by explaining how proinflammatory cytokines induce resistance to the major growth factor, insulin-like growth factor-I (IGF-I). We also highlight that IGF-I can induce resistance or reduce sensitivity to brain TNFα and discuss how TNFα, IL-1β and IGF-I interact to regulate several aspects of behavior and cognition.
American Journal of Physiology-Endocrinology and Metabolism, 2004
Leucine (Leu) is known to stimulate translation initiation of protein synthesis at mammalian targ... more Leucine (Leu) is known to stimulate translation initiation of protein synthesis at mammalian target of rapamycin (mTOR) in the insulin signaling pathway. However, potential feedback from mTOR to upstream aspects of the insulin signaling pathway remains controversial. This study evaluates the impact of a physiological oral dose of Leu and/or carbohydrate (CHO) on upstream elements of the insulin signaling pathway using phosphatidylinositol 3-kinase (PI 3-kinase) activity and glucose uptake as markers for insulin sensitivity and glucose homeostasis. Rats (∼200 g) were fasted 12 h and administered oral doses of CHO (1.31 g glucose, 1.31 g sucrose), Leu (270 mg), or CHO plus Leu. Animals were killed at 15, 30, 60, and 90 min after treatment. Plasma and gastrocnemius muscles were collected for analyses. Treatments were designed to produce elevated blood glucose and insulin with basal levels of Leu (CHO); elevated Leu with basal levels of glucose and insulin (Leu); or a combined increase ...
Chronic elevation of proinflammatory markers in type 2 diabetes (T2D) is well defined, but the ro... more Chronic elevation of proinflammatory markers in type 2 diabetes (T2D) is well defined, but the role of anti-inflammatory cytokines in T2D is less clear. In this study, we report that normal IL-4-dependent elaboration of IL-1 receptor antagonist (IL-1RA) requires IRS-2-mediated PI3K activity in primary macrophages. We also show that macrophages isolated from obese/diabetic db/db mice have impaired IRS-2-mediated PI3K activity and constitutively overexpress suppressor of cytokine signaling (SOCS)-3, which impairs an important IL-4 anti-inflammatory function. Peritoneal proinflammatory cytokine levels were examined in diabese (db/db) mice, and IL-6 was found to be nearly 7-fold higher than in nondiabese (db/+) control mice. Resident peritoneal macrophages were isolated from db/db mice and were found to constitutively overexpress IL-6 and were unable to elaborate IL-1RA in response to IL-4-like db/+ mouse macrophages. Inhibition of PI3K with wortmannin or blockage of IRS-2/PI3K complex ...
Diseases of the central nervous system (CNS) remain a significant health, social and economic pro... more Diseases of the central nervous system (CNS) remain a significant health, social and economic problem around the globe. The development of therapeutic strategies for CNS conditions has suffered due to a poor understanding of the underlying pathologies that manifest them. Understanding common etiological origins at the cellular and molecular level is essential to enhance the development of efficacious and targeted treatment options. Over the years, neuroinflammation has been posited as a common link between multiple neurological, neurodegenerative and neuropsychiatric disorders. Processes that precipitate neuroinflammatory conditions including genetics, infections, physical injury and psychosocial factors, like stress and trauma, closely link dysregulation in kynurenine pathway (KP) of tryptophan metabolism as a possible pathophysiological factor that ‘fuel the fire’ in CNS diseases. In this study, we aim to review emerging evidence that provide mechanistic insights between different...
Chronic stress is a well-known risk factor in major depressive disorder and disrupts the kynureni... more Chronic stress is a well-known risk factor in major depressive disorder and disrupts the kynurenine and serotonin pathways of tryptophan metabolism. Here, we characterize the temporal central and peripheral changes in tryptophan metabolism and concomitant depressive-like behavioural phenotype induced during the progression of chronic unpredictable stress (CUS). Mice were exposed to 0, 10, 20, or 30 days of CUS followed by a panel of behavioural assays to determine depressive-like phenotypes. Immediately after behavioural testing, plasma and brain tissue were collected for metabolic analysis. While anhedonia-like and anxiety-like behaviours were unaffected by stress, nesting behaviour and cognitive deficits became apparent in response to CUS exposure. While CUS caused a transient reduction in circulating quinolinic acid, no other tryptophan metabolites significantly changed in response to CUS. In the brain, tryptophan, kynurenine, picolinic acid, and 5-hydroxyindoleacetic acid concen...
Chronic stress or inflammation increases tryptophan metabolism along the kynurenine pathway (KP),... more Chronic stress or inflammation increases tryptophan metabolism along the kynurenine pathway (KP), and the generation of neuroactive kynurenine metabolites contributes to subsequent depressive-like behaviors. Microglia regulate KP balance by preferentially producing oxidative metabolites, including quinolinic acid. Research has focused on the interplay between cytokines and HPA axis-derived corticosteroids in regulating microglial activity and effects of KP metabolites directly on neurons; however, the potential role that KP metabolites have directly on microglial activity is unknown. Here, murine microglia were stimulated with lipopolysaccharide(LPS). After 6 hours, mRNA expression of interleukin(IL)-1β, IL-6, tumor necrosis factor(TNF)-α and inducible nitric oxide synthase(iNOS) was dose-dependently increased along with the rate-limiting enzymes for oxidative KP metabolism, indoleamine-2,3dioxygenase(IDO)-1 and kynurenine 3-monooxygenase(KMO). By 24 hours post-LPS, kynurenine and quinolinic acid in the media was elevated. Inhibiting KMO with Ro 61-8048 during LPS challenge attenuated extracellular nitrite accumulation and expression of KMO and TNF-α in response to LPS. Similarly, primary microglia isolated from KMO-/mice exhibited a significantly reduced pro-inflammatory response to LPS compared to WT controls. To determine whether the substrate (kynurenine) or end product (quinolinic acid) of KMO-dependent metabolism modulates the LPS response, microglia were treated with increasing concentrations of L-kynurenine or quinolinic acid in combination with LPS or saline. Interestingly, quinolinic acid did not impact the microglial LPS response. However, L-kynurenine had dose-dependent inhibitory effect on the LPS response. These data are the first to show an anti-inflammatory effect Address correspondence to.
Peripheral immune challenge can elicit microglia activation and depression-related symptoms. The ... more Peripheral immune challenge can elicit microglia activation and depression-related symptoms. The balance of inflammatory signals in the tryptophan pathway can skew the activity of indoleamine-pyrrole 2,3 dioxygenase (IDO1) towards the metabolization of tryptophan into kynurenine (rather than serotonin), and towards neuroprotective or neurotoxic metabolites. The proteome changes that accompany inflammation-associated depression-related behaviors are incompletely understood. The changes in microglia protein abundance and post-translational modifications in wild type (WT) mice that exhibit depression-like symptoms after recovery from peripheral Bacille Calmette-Guerin (BCG) challenge were studied. This WT_BGG group was compared to mice that do not express depression-like symptoms after BCG challenge due to IDO1 deficiency by means of genetic knockout (BCG_KO group), and to WT Saline-treated (Sal) mice (WT_Sal group) using a mass spectrometry-based label-free approach. The comparison of...
Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology, Jan 9, 2018
Emerging data continues to point towards a relationship between neuroinflammation and neuropsychi... more Emerging data continues to point towards a relationship between neuroinflammation and neuropsychiatric disorders. ATP-induced activation of P2X7 results in IL-1β release causing neuroinflammation and microglial activation. This study describes the in-vitro and in-vivo neuropharmacology of a novel brain-penetrant P2X7 antagonist, JNJ-55308942, currently in clinical development. JNJ-55308942 is a high-affinity, selective, brain-penetrant (brain/plasma of 1) P2X7 functional antagonist. In human blood and in mouse blood and microglia, JNJ-55308942 attenuated IL-1β release in a potent and concentration-dependent manner. After oral dosing, the compound exhibited both dose and concentration-dependent occupancy of rat brain P2X7 with an ED of 0.07 mg/kg. The P2X7 antagonist (3 mg/kg, oral) blocked Bz-ATP-induced brain IL-1β release in conscious rats, demonstrating functional effects of target engagement in the brain. JNJ-55308942 (30 mg/kg, oral) attenuated LPS-induced microglial activation...
Glial cell line-derived neurotrophic factor (GDNF) is the most potent neuroprotective agent teste... more Glial cell line-derived neurotrophic factor (GDNF) is the most potent neuroprotective agent tested in cellular and animal models of Parkinson's disease (PD). However, CNS delivery of GDNF is restricted by the blood-brain barrier (BBB). Using total body irradiation as transplant preconditioning, we previously reported that hematopoietic stem cell (HSC) transplantation (HSCT)-based macrophage-mediated gene therapy could deliver GDNF to the brain to prevent degeneration of nigrostriatal dopamine (DA) neurons in an acute murine neurotoxicity model. Here, we validate this therapeutic approach in a chronic progressive PD model - the MitoPark mouse, with head shielding to avoid inducing neuroinflammation and compromising BBB integrity. Bone marrow HSCs were transduced ex vivo with a lentiviral vector expressing macrophage promoter-driven GDNF and transplanted into MitoPark mice exhibiting well developed PD-like impairments. Transgene-expressing macrophages infiltrated the midbrains of ...
Proceedings of the National Academy of Sciences of the United States of America, Nov 30, 2017
Chronic inflammation in adipose tissue plays a key role in obesity-induced insulin resistance. Ho... more Chronic inflammation in adipose tissue plays a key role in obesity-induced insulin resistance. However, the mechanisms underlying obesity-induced inflammation remain elusive. Here we show that obesity promotes mtDNA release into the cytosol, where it triggers inflammatory responses by activating the DNA-sensing cGAS-cGAMP-STING pathway. Fat-specific knockout of disulfide-bond A oxidoreductase-like protein (DsbA-L), a chaperone-like protein originally identified in the mitochondrial matrix, impaired mitochondrial function and promoted mtDNA release, leading to activation of the cGAS-cGAMP-STING pathway and inflammatory responses. Conversely, fat-specific overexpression of DsbA-L protected mice against high-fat diet-induced activation of the cGAS-cGAMP-STING pathway and inflammation. Taken together, we identify DsbA-L as a key molecule that maintains mitochondrial integrity. DsbA-L deficiency promotes inflammation and insulin resistance by activating the cGAS-cGAMP-STING pathway. Our ...
Background: Inflammation increases the risk of developing depression-related symptoms, and trypto... more Background: Inflammation increases the risk of developing depression-related symptoms, and tryptophan metabolism is an important mediator of these behavior changes. Peripheral immune activation results in central up-regulation of pro-inflammatory cytokine expression, microglia activation, and the production of neurotoxic kynurenine metabolites. The neuroinflammatory and kynurenine metabolic response to peripheral immune activation has been largely characterized at the whole brain level. It is unknown if this metabolic response exhibits regional specificity even though the unique indoleamine 2,3-dioxygenase (IDO)-dependent depressive-like behaviors are known to be controlled by discrete brain regions. Therefore, regional characterization of neuroinflammation and kynurenine metabolism might allow for better understanding of the potential mechanisms that mediate inflammation-associated behavior changes. Methods: Following peripheral immune challenge with lipopolysaccharide (LPS), brain tissue from behaviorally relevant regions was analyzed for changes in mRNA of neuroinflammatory targets and kynurenine pathway enzymes. The metabolic balance of the kynurenine pathway was also determined in the peripheral circulation and these brain regions. Results: Peripheral LPS treatment resulted in region-independent up-regulation of brain expression of pro-inflammatory cytokines and glial cellular markers indicative of a neuroinflammatory response. The expression of kynurenine pathway enzymes was also largely region-independent. While the kynurenine/tryptophan ratio was elevated significantly in both the plasma and in each brain regions evaluated, the balance of kynurenine metabolism was skewed toward production of neurotoxic metabolites in the hippocampus. Conclusions: The upstream neuroinflammatory processes, such as pro-inflammatory cytokine production, glial cell activation, and kynurenine production, may be similar throughout the brain. However, it appears that the balance of downstream kynurenine metabolism is a tightly regulated brain region-dependent process.
The kynurenine pathway of tryptophan metabolism has an important role in mediating the behavioral... more The kynurenine pathway of tryptophan metabolism has an important role in mediating the behavioral effects of inflammation, which has implications in understanding neuropsychiatric comorbidity and for the development of novel therapies. Inhibition of the rate-limiting enzyme, indoleamine 2,3-dioxygenase (IDO), prevents the development of many of these inflammation-induced preclinical behaviors. However, dysregulation in the balance of downstream metabolism, where neuroactive kynurenines are generated, is hypothesized to be a functionally important pathogenic feature of inflammation-induced depression. Here we utilized two novel transgenic mouse strains to directly test the hypothesis that neurotoxic kynurenine metabolism causes depressive-like behavior following peripheral immune activation. Wild-type (WT) or kynurenine 3-monooxygenase (KMO)-deficient (KMO−/−) mice were administered either lipopolysaccharide (LPS, 0.5 mg kg−1) or saline intraperitoneally. Depressive-like behavior was...
Cognitive dysfunction in depression is a prevalent and debilitating symptom that is poorly treate... more Cognitive dysfunction in depression is a prevalent and debilitating symptom that is poorly treated by the currently available pharmacotherapies. Research over the past decade has provided evidence for proinflammatory involvement in the neurobiology of depressive disorders and symptoms associated with these disorders, including aspects of memory dysfunction. Recent clinical studies implicate inflammation-related changes in kynurenine metabolism as a potential pathogenic factor in the development of a range of depressive symptoms, including deficits in cognition and memory. Additionally, preclinical work has demonstrated a number of mood-related depressive-like behaviors to be dependent on indoleamine 2,3-dioxygenase-1 (IDO1), the inflammation-induced rate-limiting enzyme of the kynurenine pathway. Here, we demonstrate in a mouse model, that peripheral administration of endotoxin induced a deficit in recognition memory. Mice deficient in IDO were protected from cognitive impairment. Furthermore, endotoxin-induced inflammation increased kynurenine metabolism within the perirhinal/entorhinal cortices, brain regions which have been implicated in recognition memory. A single peripheral injection of kynurenine, the metabolic product of IDO1, was sufficient to induce a deficit in recognition memory in both control and IDO null mice. Finally, kynurenine monooxygenase (KMO) deficient mice were also protected from inflammation-induced deficits on novel object recognition. These data implicate IDO-dependent neurotoxic kynurenine metabolism as a pathogenic factor for cognitive dysfunction in inflammation-induced depressive disorders and a potential novel target for the treatment of these disorders.
BACKGROUND: We have previously shown that use of an EC brush device in combination with the Rover... more BACKGROUND: We have previously shown that use of an EC brush device in combination with the Rovers Cervex-Brush (SurePath broom) offered no significant improvement in EC recovery. Here we determine if use of additional collection devices enhance the diagnostic utility of the SurePath Pap for gynecologic cytology. METHODS: After informed consent, 37 women ages 18-56 receiving their routine cervical examinations were randomized into four experimental groups. Each group was first sampled with the SurePath broom then immediately re-sampled with an additional collection device or devices. Group 1: Rover endocervix brush (n = 8). Group 2: Medscand CytoBrush Plus GT (n = 7). Group 3: Rover spatula + endocervix brush (n = 11). Group 4: Medscand spatula + CytoBrush Plus GT (n = 11). RESULTS: Examination of SurePath broom-collected cytology yielded the following abnormal diagnoses: atypia (n = 2), LSIL (n = 5) and HSIL (n = 3). Comparison of these diagnoses to those obtained from paired sampl...
The Journal of neuroscience : the official journal of the Society for Neuroscience, Jan 31, 2007
Acute hypoxia is experienced in an array of ailments and conditions, including asthma, chronic ob... more Acute hypoxia is experienced in an array of ailments and conditions, including asthma, chronic obstructive pulmonary disease, heart failure, sleep apnea, acute hypotension, and blast lung injury. Classically, infection activates the neuroimmune system, causing loss of interest in the social environment. We report that the non-infectious stimulus acute hypoxia triggers neuroimmune system activation (NSA), causing loss of interest in the social environment, and that recovery from hypoxia-induced NSA is impaired in a mouse model of type 2 diabetes. Importantly, recovery from the behavioral consequences of hypoxia-induced NSA was nearly ablated in MyD88 (myeloid differentiation factor 88) knock-out mice and in mice intracerebroventricularly administered the caspase-1 inhibitor ac-YVAD-CMK (ac-Tyr-Val-Asp-2,6-dimethylbenzoyloxymethylketone). Diabetic mice had prolonged recovery from NSA that could be halved by administration of subcutaneous interleukin-1 (IL-1) receptor antagonist (RA). ...
Type 2 diabetes (T2D) is associated with accelerated atherosclerosis, which accounts for approxim... more Type 2 diabetes (T2D) is associated with accelerated atherosclerosis, which accounts for approximately 75% of all diabetesrelated deaths. Here we investigate the link between diabetes and macrophage cholesteryl ester accumulation. When diabetic (db/db) mice are given cholesteryl ester intraperitoneally (IP), peritoneal macrophages (PerMWs) recovered from these animals showed a 58% increase in intracellular cholesteryl ester accumulation over PerMWs from heterozygote control (db/+) mice. Notably, PerMW fluid-phase endocytosis and large particle phagocytosis was equivalent in db/+and db/db mice. However, IP administration of CD36 and SR-A blocking antibodies led to 37% and 25% reductions in cholesteryl ester accumulation in PerMW. Finally, in order to determine if these scavenger receptors (SRs) were part of the mechanism responsible for the increased accumulation of cholesteryl esters observed in the diabetic mouse macrophages, receptor expression was quantified by flow cytometry. Importantly, db/db PerMWs showed a 43% increase in CD36 expression and an 80% increase in SR-A expression. Taken together, these data indicate that direct cholesteryl ester accumulation in mouse macrophages is mediated by CD36 and SR-A, and the magnitude of accumulation is increased in db/db macrophages due to increased scavenger receptor expression.
Background Transient stimulation of the innate immune system by an intraperitoneal injection of l... more Background Transient stimulation of the innate immune system by an intraperitoneal injection of lipopolysaccharide (LPS) activates peripheral and central expression of the tryptophan degrading enzyme indoleamine 2,3 dioxygenase (IDO) which mediates depressive-like behavior. It is unknown whether direct activation of the brain with LPS is sufficient to activate IDO and induce depressive-like behavior. Methods Sickness and depressive-like behavior in C57BL/6J mice were assessed by social exploration and the forced swim test, respectively. Expression of cytokines and IDO mRNA was measured by real-time RT-PCR and cytokine protein was measured by enzyme-linked immunosorbent assays (ELISAs). Enzymatic activity of IDO was estimated as the amount of kynurenine produced from tryptophan as determined by high pressure liquid chromatography (HPLC) with electrochemical detection. Results Intracerebroventricular (i.c.v.) administration of LPS (100 ng) increased steady-state transcripts of TNFα, I...
Chronic inflammation appears to play a critical role in type 2 diabetes and its complications. He... more Chronic inflammation appears to play a critical role in type 2 diabetes and its complications. Here we tested the hypothesis that this inflammatory dysregulation affects the IL-1β system and has functional consequences in the brain. Diabetic, db/db, and nondiabetic, db/+, mice were administered i.p. LPS, a potent cytokine inducer, at a dose of 100 μg/kg/mouse. db/db mouse innate immune-associated sickness behavior was 14.8, 33, 44.7, and 34% greater than that of db/+ mice at 2, 4, 8, and 12 h, respectively. When a fixed dose of LPS was used (5 μg/mouse), db/db mouse sickness was again enhanced 18.4, 22.2, and 14.5% at 4, 8, and 12 h as compared with db/+ mice. In diabetic mice, peritoneal macrophages produced more IL-1β in response to LPS, and peritoneal levels of IL-1β induced by LPS were increased. Importantly, IL-1R antagonist and type 2 IL-1 receptor (IL-1R2) failed to up-regulate in response to LPS in db/db mice. Finally, both peripheral and central administration of IL-1β, its...
Dysregulated inflammation is a complication of type 2 diabetes (T2D). In this study, we show that... more Dysregulated inflammation is a complication of type 2 diabetes (T2D). In this study, we show that augmented LPS-induced TNF-α production by resident peritoneal macrophages (PerMφ) in type 2 diabetic (db/db) mice is dependent on elevated glucose and requires p38 MAPK. Intraperitoneal LPS administered to db/db and nondiabetic (db/+) mice induced 3- and 4-fold more TNF-α in the peritoneum and serum, respectively, of db/db mice as compared with db/+ mice. Examination of the TLR-4/MD2 complex and CD14 expression showed no difference between db/db and db/+ PerMφ. Ex vivo stimulation of PerMφ with LPS produced a similar 3-fold increase in TNF-α production in db/db PerMφ when compared with db/+ PerMφ. PerMφ isolated from db/+ mice incubated in high glucose (4 g/L) medium for 12 h produced nearly 2-fold more TNF-α in response to LPS than PerMφ incubated in normal glucose medium (1 g/L). LPS-dependent stimulation of PI3K activity, ERK1/2 activation, and p38 kinase activity was greater in PerM...
We have shown previously that hyperinsulinemia inhibits interferon-␣-dependent activation of phos... more We have shown previously that hyperinsulinemia inhibits interferon-␣-dependent activation of phosphatidylinositol 3-kinase (PI3-kinase) through mammalian target of rapamycin (mTOR)-induced serine phosphorylation of insulin receptor substrate (IRS)-1. Here we report that chronic insulin and high glucose synergistically inhibit interleukin (IL)-4-dependent activation of PI3-kinase in macrophages via the mTOR pathway. Resident peritoneal macrophages (PerM⌽s) from diabetic (db/db) mice showed a 44% reduction in IRS-2-associated PI3-kinase activity stimulated by IL-4 compared with PerM⌽s from heterozygote (db/؉) control mice. IRS-2 from db/db mouse PerM⌽s also showed a 78% increase in Ser/Thr-Pro motif phosphorylation without a difference in IRS-2 mass. To investigate the mechanism of this PI3kinase inhibition, 12-O-tetradecanoylphorbol-13-acetate-matured U937 cells were treated chronically with insulin (1 nM, 18 h) and high glucose (4.5 g/liter, 48 h). In these cells, IL-4-stimulated IRS-2-associated PI3-kinase activity was reduced by 37.5%. Importantly, chronic insulin or high glucose alone did not impact IL-4-activated IRS-2-associated PI3-kinase. Chronic insulin ؉ high glucose did reduce IL-4-dependent IRS-2 tyrosine phosphorylation and p85 association by 54 and 37%, respectively, but did not effect IL-4-activated JAK/STAT signaling. When IRS-2 Ser/Thr-Pro motif phosphorylation was examined, chronic insulin ؉ high glucose resulted in a 92% increase in IRS-2 Ser/Thr-Pro motif phosphorylation without a change in IRS-2 mass. Pretreatment of matured U937 cells with rapamycin blocked chronic insulin ؉ high glucose-dependent IRS-2 Ser/Thr-Pro motif phosphorylation and restored IL-4-dependent IRS-2-associated PI3-kinase activity. Taken together these results indicate that IRS-2-dependent IL-4 signaling in macrophages is impaired in models of type 2 diabetes mellitus through a mechanism that relies on insulin/ glucose-dependent Ser/Thr-Pro motif serine phosphorylation mediated by the mTOR pathway.
During the past decade, the immune and endocrine systems have been discovered to interact in cont... more During the past decade, the immune and endocrine systems have been discovered to interact in controlling physiologic processes as diverse as cell growth and differentiation, metabolism, and even human and animal behavior. The interaction between these two major physiological systems is a bi-directional process. While it has been well documented that hormones, including prolactin (PRL), growth hormone (GH), insulin-like growth factor-I (IGF-I), and thyroid-stimulating hormone (TSH), regulate a variety of immune events, a great deal of data have accumulated supporting the notion that cytokines from the innate immune system also affect the neuroendocrine system. Communication between these two systems coordinates processes that are necessary to maintain homeostasis. Proinflammatory cytokines often act as negative regulatory signals that temper the action of hormones and growth factors. This system of 'checks and balances' is an active, ongoing process, even in healthy individuals. Dysregulation of this process has been implicated as a potential pathogenic factor in the development of co-morbid conditions associated with several chronic inflammatory diseases, including type 2 diabetes, cardiovascular disease, cerebrovascular disease, inflammatory bowel disease, rheumatoid arthritis, major depression and even normal aging. Over the past decade, research in our laboratory has focused on the ability of the major proinflammatory cytokines, tumor necrosis factor (TNF)α and interleukin (IL)-1β, to induce a state of IGF resistance. This review will highlight these and other new findings by explaining how proinflammatory cytokines induce resistance to the major growth factor, insulin-like growth factor-I (IGF-I). We also highlight that IGF-I can induce resistance or reduce sensitivity to brain TNFα and discuss how TNFα, IL-1β and IGF-I interact to regulate several aspects of behavior and cognition.
American Journal of Physiology-Endocrinology and Metabolism, 2004
Leucine (Leu) is known to stimulate translation initiation of protein synthesis at mammalian targ... more Leucine (Leu) is known to stimulate translation initiation of protein synthesis at mammalian target of rapamycin (mTOR) in the insulin signaling pathway. However, potential feedback from mTOR to upstream aspects of the insulin signaling pathway remains controversial. This study evaluates the impact of a physiological oral dose of Leu and/or carbohydrate (CHO) on upstream elements of the insulin signaling pathway using phosphatidylinositol 3-kinase (PI 3-kinase) activity and glucose uptake as markers for insulin sensitivity and glucose homeostasis. Rats (∼200 g) were fasted 12 h and administered oral doses of CHO (1.31 g glucose, 1.31 g sucrose), Leu (270 mg), or CHO plus Leu. Animals were killed at 15, 30, 60, and 90 min after treatment. Plasma and gastrocnemius muscles were collected for analyses. Treatments were designed to produce elevated blood glucose and insulin with basal levels of Leu (CHO); elevated Leu with basal levels of glucose and insulin (Leu); or a combined increase ...
Chronic elevation of proinflammatory markers in type 2 diabetes (T2D) is well defined, but the ro... more Chronic elevation of proinflammatory markers in type 2 diabetes (T2D) is well defined, but the role of anti-inflammatory cytokines in T2D is less clear. In this study, we report that normal IL-4-dependent elaboration of IL-1 receptor antagonist (IL-1RA) requires IRS-2-mediated PI3K activity in primary macrophages. We also show that macrophages isolated from obese/diabetic db/db mice have impaired IRS-2-mediated PI3K activity and constitutively overexpress suppressor of cytokine signaling (SOCS)-3, which impairs an important IL-4 anti-inflammatory function. Peritoneal proinflammatory cytokine levels were examined in diabese (db/db) mice, and IL-6 was found to be nearly 7-fold higher than in nondiabese (db/+) control mice. Resident peritoneal macrophages were isolated from db/db mice and were found to constitutively overexpress IL-6 and were unable to elaborate IL-1RA in response to IL-4-like db/+ mouse macrophages. Inhibition of PI3K with wortmannin or blockage of IRS-2/PI3K complex ...
Diseases of the central nervous system (CNS) remain a significant health, social and economic pro... more Diseases of the central nervous system (CNS) remain a significant health, social and economic problem around the globe. The development of therapeutic strategies for CNS conditions has suffered due to a poor understanding of the underlying pathologies that manifest them. Understanding common etiological origins at the cellular and molecular level is essential to enhance the development of efficacious and targeted treatment options. Over the years, neuroinflammation has been posited as a common link between multiple neurological, neurodegenerative and neuropsychiatric disorders. Processes that precipitate neuroinflammatory conditions including genetics, infections, physical injury and psychosocial factors, like stress and trauma, closely link dysregulation in kynurenine pathway (KP) of tryptophan metabolism as a possible pathophysiological factor that ‘fuel the fire’ in CNS diseases. In this study, we aim to review emerging evidence that provide mechanistic insights between different...
Chronic stress is a well-known risk factor in major depressive disorder and disrupts the kynureni... more Chronic stress is a well-known risk factor in major depressive disorder and disrupts the kynurenine and serotonin pathways of tryptophan metabolism. Here, we characterize the temporal central and peripheral changes in tryptophan metabolism and concomitant depressive-like behavioural phenotype induced during the progression of chronic unpredictable stress (CUS). Mice were exposed to 0, 10, 20, or 30 days of CUS followed by a panel of behavioural assays to determine depressive-like phenotypes. Immediately after behavioural testing, plasma and brain tissue were collected for metabolic analysis. While anhedonia-like and anxiety-like behaviours were unaffected by stress, nesting behaviour and cognitive deficits became apparent in response to CUS exposure. While CUS caused a transient reduction in circulating quinolinic acid, no other tryptophan metabolites significantly changed in response to CUS. In the brain, tryptophan, kynurenine, picolinic acid, and 5-hydroxyindoleacetic acid concen...
Chronic stress or inflammation increases tryptophan metabolism along the kynurenine pathway (KP),... more Chronic stress or inflammation increases tryptophan metabolism along the kynurenine pathway (KP), and the generation of neuroactive kynurenine metabolites contributes to subsequent depressive-like behaviors. Microglia regulate KP balance by preferentially producing oxidative metabolites, including quinolinic acid. Research has focused on the interplay between cytokines and HPA axis-derived corticosteroids in regulating microglial activity and effects of KP metabolites directly on neurons; however, the potential role that KP metabolites have directly on microglial activity is unknown. Here, murine microglia were stimulated with lipopolysaccharide(LPS). After 6 hours, mRNA expression of interleukin(IL)-1β, IL-6, tumor necrosis factor(TNF)-α and inducible nitric oxide synthase(iNOS) was dose-dependently increased along with the rate-limiting enzymes for oxidative KP metabolism, indoleamine-2,3dioxygenase(IDO)-1 and kynurenine 3-monooxygenase(KMO). By 24 hours post-LPS, kynurenine and quinolinic acid in the media was elevated. Inhibiting KMO with Ro 61-8048 during LPS challenge attenuated extracellular nitrite accumulation and expression of KMO and TNF-α in response to LPS. Similarly, primary microglia isolated from KMO-/mice exhibited a significantly reduced pro-inflammatory response to LPS compared to WT controls. To determine whether the substrate (kynurenine) or end product (quinolinic acid) of KMO-dependent metabolism modulates the LPS response, microglia were treated with increasing concentrations of L-kynurenine or quinolinic acid in combination with LPS or saline. Interestingly, quinolinic acid did not impact the microglial LPS response. However, L-kynurenine had dose-dependent inhibitory effect on the LPS response. These data are the first to show an anti-inflammatory effect Address correspondence to.
Peripheral immune challenge can elicit microglia activation and depression-related symptoms. The ... more Peripheral immune challenge can elicit microglia activation and depression-related symptoms. The balance of inflammatory signals in the tryptophan pathway can skew the activity of indoleamine-pyrrole 2,3 dioxygenase (IDO1) towards the metabolization of tryptophan into kynurenine (rather than serotonin), and towards neuroprotective or neurotoxic metabolites. The proteome changes that accompany inflammation-associated depression-related behaviors are incompletely understood. The changes in microglia protein abundance and post-translational modifications in wild type (WT) mice that exhibit depression-like symptoms after recovery from peripheral Bacille Calmette-Guerin (BCG) challenge were studied. This WT_BGG group was compared to mice that do not express depression-like symptoms after BCG challenge due to IDO1 deficiency by means of genetic knockout (BCG_KO group), and to WT Saline-treated (Sal) mice (WT_Sal group) using a mass spectrometry-based label-free approach. The comparison of...
Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology, Jan 9, 2018
Emerging data continues to point towards a relationship between neuroinflammation and neuropsychi... more Emerging data continues to point towards a relationship between neuroinflammation and neuropsychiatric disorders. ATP-induced activation of P2X7 results in IL-1β release causing neuroinflammation and microglial activation. This study describes the in-vitro and in-vivo neuropharmacology of a novel brain-penetrant P2X7 antagonist, JNJ-55308942, currently in clinical development. JNJ-55308942 is a high-affinity, selective, brain-penetrant (brain/plasma of 1) P2X7 functional antagonist. In human blood and in mouse blood and microglia, JNJ-55308942 attenuated IL-1β release in a potent and concentration-dependent manner. After oral dosing, the compound exhibited both dose and concentration-dependent occupancy of rat brain P2X7 with an ED of 0.07 mg/kg. The P2X7 antagonist (3 mg/kg, oral) blocked Bz-ATP-induced brain IL-1β release in conscious rats, demonstrating functional effects of target engagement in the brain. JNJ-55308942 (30 mg/kg, oral) attenuated LPS-induced microglial activation...
Glial cell line-derived neurotrophic factor (GDNF) is the most potent neuroprotective agent teste... more Glial cell line-derived neurotrophic factor (GDNF) is the most potent neuroprotective agent tested in cellular and animal models of Parkinson's disease (PD). However, CNS delivery of GDNF is restricted by the blood-brain barrier (BBB). Using total body irradiation as transplant preconditioning, we previously reported that hematopoietic stem cell (HSC) transplantation (HSCT)-based macrophage-mediated gene therapy could deliver GDNF to the brain to prevent degeneration of nigrostriatal dopamine (DA) neurons in an acute murine neurotoxicity model. Here, we validate this therapeutic approach in a chronic progressive PD model - the MitoPark mouse, with head shielding to avoid inducing neuroinflammation and compromising BBB integrity. Bone marrow HSCs were transduced ex vivo with a lentiviral vector expressing macrophage promoter-driven GDNF and transplanted into MitoPark mice exhibiting well developed PD-like impairments. Transgene-expressing macrophages infiltrated the midbrains of ...
Proceedings of the National Academy of Sciences of the United States of America, Nov 30, 2017
Chronic inflammation in adipose tissue plays a key role in obesity-induced insulin resistance. Ho... more Chronic inflammation in adipose tissue plays a key role in obesity-induced insulin resistance. However, the mechanisms underlying obesity-induced inflammation remain elusive. Here we show that obesity promotes mtDNA release into the cytosol, where it triggers inflammatory responses by activating the DNA-sensing cGAS-cGAMP-STING pathway. Fat-specific knockout of disulfide-bond A oxidoreductase-like protein (DsbA-L), a chaperone-like protein originally identified in the mitochondrial matrix, impaired mitochondrial function and promoted mtDNA release, leading to activation of the cGAS-cGAMP-STING pathway and inflammatory responses. Conversely, fat-specific overexpression of DsbA-L protected mice against high-fat diet-induced activation of the cGAS-cGAMP-STING pathway and inflammation. Taken together, we identify DsbA-L as a key molecule that maintains mitochondrial integrity. DsbA-L deficiency promotes inflammation and insulin resistance by activating the cGAS-cGAMP-STING pathway. Our ...
Background: Inflammation increases the risk of developing depression-related symptoms, and trypto... more Background: Inflammation increases the risk of developing depression-related symptoms, and tryptophan metabolism is an important mediator of these behavior changes. Peripheral immune activation results in central up-regulation of pro-inflammatory cytokine expression, microglia activation, and the production of neurotoxic kynurenine metabolites. The neuroinflammatory and kynurenine metabolic response to peripheral immune activation has been largely characterized at the whole brain level. It is unknown if this metabolic response exhibits regional specificity even though the unique indoleamine 2,3-dioxygenase (IDO)-dependent depressive-like behaviors are known to be controlled by discrete brain regions. Therefore, regional characterization of neuroinflammation and kynurenine metabolism might allow for better understanding of the potential mechanisms that mediate inflammation-associated behavior changes. Methods: Following peripheral immune challenge with lipopolysaccharide (LPS), brain tissue from behaviorally relevant regions was analyzed for changes in mRNA of neuroinflammatory targets and kynurenine pathway enzymes. The metabolic balance of the kynurenine pathway was also determined in the peripheral circulation and these brain regions. Results: Peripheral LPS treatment resulted in region-independent up-regulation of brain expression of pro-inflammatory cytokines and glial cellular markers indicative of a neuroinflammatory response. The expression of kynurenine pathway enzymes was also largely region-independent. While the kynurenine/tryptophan ratio was elevated significantly in both the plasma and in each brain regions evaluated, the balance of kynurenine metabolism was skewed toward production of neurotoxic metabolites in the hippocampus. Conclusions: The upstream neuroinflammatory processes, such as pro-inflammatory cytokine production, glial cell activation, and kynurenine production, may be similar throughout the brain. However, it appears that the balance of downstream kynurenine metabolism is a tightly regulated brain region-dependent process.
The kynurenine pathway of tryptophan metabolism has an important role in mediating the behavioral... more The kynurenine pathway of tryptophan metabolism has an important role in mediating the behavioral effects of inflammation, which has implications in understanding neuropsychiatric comorbidity and for the development of novel therapies. Inhibition of the rate-limiting enzyme, indoleamine 2,3-dioxygenase (IDO), prevents the development of many of these inflammation-induced preclinical behaviors. However, dysregulation in the balance of downstream metabolism, where neuroactive kynurenines are generated, is hypothesized to be a functionally important pathogenic feature of inflammation-induced depression. Here we utilized two novel transgenic mouse strains to directly test the hypothesis that neurotoxic kynurenine metabolism causes depressive-like behavior following peripheral immune activation. Wild-type (WT) or kynurenine 3-monooxygenase (KMO)-deficient (KMO−/−) mice were administered either lipopolysaccharide (LPS, 0.5 mg kg−1) or saline intraperitoneally. Depressive-like behavior was...
Uploads
Papers by Jason O'Connor