Papers by Jacques Pouysségur
Molecular and Cellular Biology, 1999
Like other cellular models, endothelial cells in cultures stop growing when they reach confluence... more Like other cellular models, endothelial cells in cultures stop growing when they reach confluence, even in the presence of growth factors. In this work, we have studied the effect of cellular contact on the activation of p42/p44 mitogen-activated protein kinase (MAPK) by growth factors in mouse vascular endothelial cells. p42/p44 MAPK activation by fetal calf serum or fibroblast growth factor was restrained in confluent cells in comparison with the activity found in sparse cells. Consequently, the induction of c-fos, MAPK phosphatases 1 and 2 (MKP1/2), and cyclin D1 was also restrained in confluent cells. In contrast, the activation of Ras and MEK-1, two upstream activators of the p42/p44 MAPK cascade, was not impaired when cells attained confluence. Sodium orthovanadate, but not okadaic acid, restored p42/p44 MAPK activity in confluent cells. Moreover, lysates from confluent 1G11 cells more effectively inactivated a dually phosphorylated active p42 MAPK than lysates from sparse cel...
Table S1: Comparison of the amino acid concentrations of the media/versus human plasma.
Figure S5: Rescue of CD98 expression in A549 LAT1KO cells
Table S2: Analysis of the mutations generated by ZFN in each LS174T-derived cell line used.
legend of Table 1 & Table 2 Legends of Supplementary Figures S1, S2, S3, S4 ,S5, S6
Figure S3: Disruption of CD98 in A549 cell line has not impact on AA sensing pathways and prolife... more Figure S3: Disruption of CD98 in A549 cell line has not impact on AA sensing pathways and proliferation.
Figure S1: Quantification of respective mRNA and protein expression of each member of the CD98/LA... more Figure S1: Quantification of respective mRNA and protein expression of each member of the CD98/LAT1 complex and β1 integrin in the various cell lines and knockout derivatives.
Figure S6: Tumorigenicity and mTORC1 activity of WT and double CD98KO/ LAT1KO cells.
Cell regulation, Aug 1, 1991
Mitogen-activated protein (MAP) kinase is a 42-kDa serine/threonine-specific protein kinase that ... more Mitogen-activated protein (MAP) kinase is a 42-kDa serine/threonine-specific protein kinase that requires phosphorylation on both tyrosine and threonine residues for activity. This enzyme is rapidly and transiently activated in quiescent cells after addition of various agonists, including insulin, epidermal growth factor, platelet-derived growth factor, and phorbol esters. We show here that addition of the growth factors thrombin or basic fibroblast growth factor to CCL39 fibroblasts rapidly induces tyrosine phosphorylation of the p42 MAP kinase protein and concomitantly stimulates MAP kinase enzymatic activity. To elucidate the signaling pathways utilized in this activation, we took advantage of the sensitivity of CCL39 cells to the toxin of bordetella pertussis, which ADP-ribosylates two GI proteins in this cell system. We show that pretreatment of cells with the toxin inhibited thrombin stimulation of MAP kinase by >75% but had no detectable effect on the stimulation induced by basic fibroblast growth factor. We also demonstrate that these two growth factors that synergize for mitogenicity are able to cooperate in activation of MAP kinase and that this synergism is partially sensitive to pertussis toxin. Finally, we describe a 44-kDa protein, the tyrosine phosphorylation of which appears to be coregulated with p42 MAP kinase. We conclude that p42 MAP kinase (and the pp44 protein) are at or are downstream from a point of convergence of two different receptor-induced signaling pathways and might well play a key role in integrating those signals.
Cellular & Molecular Biology Letters, 2019
Background: Polysaccharides from various sources have been used in traditional medicine for centu... more Background: Polysaccharides from various sources have been used in traditional medicine for centuries. The beneficial pharmacological effects of plant-derived polysaccharides include anti-tumor activity. Methods: Here, we evaluated the anti-cancer effect of the MSAGM:VO complex under hypoxic conditions (1% oxygen). MSAGM:VO is a complex of the hydrolysate of galactomannan (MSAGM) from Schizolobium amazonicum with oxovanadium (IV/ V). The hepatocellular carcinoma (HCC) cell line HepG2 was selected as HCC are one of the most hypoxic solid tumors. Results: Our results showed that the strong apoptotic activity of MSAGM:VO observed in HepG2 cells under normoxic conditions was completely lost under hypoxic conditions. We found a dynamic balance between the pro-and anti-apoptotic members of the Bcl-2 protein family. The expressions of anti-apoptotic Mcl-1 and Bcl-X L increased in hypoxia, whereas the expression of pro-apoptotic Bax decreased. MSAGM:VO strongly induced autophagy, which was previously characterized as a pro-survival mechanism in hypoxia. These results demonstrate total elimination of the anti-cancer activity of MSAGM:VO with activation of autophagy under conditions of hypoxia. Conclusion: Although this study is a proof-of-concept of the impact of hypoxia on the potential of polysaccharides, further study is encouraged. The anti-tumor activity of polysaccharides could be achieved in normoxia or through raising the activity of the immune system. In addition, combination strategies for therapy with anti-autophagic drugs could be proposed.
Biochemical Journal, 1992
Mitogen-activated protein (MAP) kinases are regarded as switch kinases in the phosphorylation cas... more Mitogen-activated protein (MAP) kinases are regarded as switch kinases in the phosphorylation cascade initiated by various agonists. We have investigated whether endothelins (ET), which are constrictor and mitogenic isopeptides, can increase MAP kinase activity in rat mesangial cells, using bovine myelin basic protein (MBP) as a substrate for an in vitro kinase assay. Treatment of quiescent mesangial cells with ET-1 rapidly stimulated a kinase activity which phosphorylated exogenous MBP. This stimulation was dose-dependent, with threshold responses at 1 nM-ET-1. Epidermal growth factor and thrombin also activated this kinase in mesangial cells. We also examined the ET signal transduction pathways leading to activation of MBP kinase. Pertussis toxin had no effect on ET-stimulated MBP kinase activity. Stimulation of protein kinase C by phorbol ester increased MBP kinase activity, and down-regulation of PKC partially inhibited ET-stimulated MBP kinase as well as phorbol ester-stimulate...
Cancer and metastasis reviews
Vascular endothelial growth factor (VEGF), a potent cytokine secreted by virtually all cells play... more Vascular endothelial growth factor (VEGF), a potent cytokine secreted by virtually all cells plays a key role in tumor angiogenesis. Disruption of one VEGF allele in mice has revealed a dramatic lethal effect in early embryogenesis, suggesting a very tight regulation of this gene. This commentary reviews the mechanisms whereby VEGF mRNA is controlled within the tumor environment by hypoxia and the MAP kinase signaling cascades. Using hamster fibroblasts as a cellular model, we demonstrated that the Ras-mediated activation of p42/p44 MAP kinases exerts a prominent action at the transcriptional level. In normoxic conditions, p42/p44 MAPKs activate the VEGF promoter at the proximal (−88/−66) region where Sp1/AP-2 transcriptional factor complexes are recruited. At low O 2 tension, the stabilized and nuclear hypoxia inducible factor-1α (HIF-1α) is directly phosphorylated by p42/p44 MAPKs, an action which enhances HIF-1-dependent transcriptional activition of VEGF. In addition, MAPKs activated under various cellular stresses (p38MAPK and JNK), contribute to the increased expression of this angiogenic growth and survival factor by stabilizing the VEGF mRNA.
Biochemical Journal, 1993
alpha-Thrombin (thrombin), a potent mitogen for CCL39 hamster lung fibroblasts, stimulates phosph... more alpha-Thrombin (thrombin), a potent mitogen for CCL39 hamster lung fibroblasts, stimulates phosphoinositide-specific phospholipase C (PI-PLC) and inhibits adenylate cyclase via cleavage of a specific G-protein-coupled receptor (TH-R), recently cloned from human and hamster cells. This action can be entirely mimicked by the synthetic peptide SFFLRNP, referred to here as TMP (thrombin-mimicking peptide). TMP corresponds to the first seven amino acids of the new N-terminus generated by thrombin cleavage of the hamster TH-R. Although thrombin and TMP apparently generate identical early transmembrane signals, only thrombin is mitogenic on its own. TMP needs to be associated with fibroblast growth factor (FGF), a tyrosine kinase-activating growth factor, to induce cell-cycle re-entry. Here, we have examined the early and late phase of p44 MAP kinase (p44mapk) activation in G0-arrested CCL39 cells after stimulation by thrombin, TMP, FGF or TMP+FGF. We found that: (i) both thrombin and TMP ...
British journal of cancer, Jan 25, 2010
Carbonic anhydrase IX (CAIX) is an enzyme upregulated by hypoxia during tumour development and pr... more Carbonic anhydrase IX (CAIX) is an enzyme upregulated by hypoxia during tumour development and progression. This study was conducted to assess if the expression of CAIX in tumour tissue and/or plasma can be a prognostic factor in patients with non-small cell lung cancer (NSCLC). Tissue microarrays containing 555 NSCLC tissue samples were generated for quantification of CAIX expression. The plasma level of CAIX was determined by ELISA in 209 of these NSCLC patients and in 58 healthy individuals. The CAIX tissue immunostaining and plasma levels were correlated with clinicopathological factors and patient outcome. CAIX tissue overexpression correlated with shorter overall survival (OS) (P=0.05) and disease-specific survival (DSS) of patients (P=0.002). The CAIX plasma level was significantly higher in patients with NSCLC than in healthy individuals (P<0.001). A high level of CAIX in the plasma of patients was associated with shorter OS (P<0.001) and DSS (P<0.001), mostly in ea...
Journal of Biological Chemistry, 1999
Hypoxia-inducible factor-1 (HIF-1) controls the expression of a number of genes such as vascular ... more Hypoxia-inducible factor-1 (HIF-1) controls the expression of a number of genes such as vascular endothelial growth factor and erythropoietin in low oxygen conditions. However, the molecular mechanisms that underlie the activation of the limiting subunit, HIF-1␣, are still poorly resolved. Results showing that endogenous HIF-1␣ migrated 12 kDa higher than in vitro translated protein led us to evaluate the possible role of phosphorylation on this phenomenon. We report here that HIF-1␣ is strongly phosphorylated in vivo and that phosphorylation is responsible for the marked differences in the migration pattern of HIF-1␣. In vitro, HIF-1␣ is phosphorylated by p42 and p44 mitogen-activated protein kinases (MAPKs) and not by p38 MAPK or c-Jun N-terminal kinase. Interestingly, p42/p44 MAPK stoichiometrically phosphorylate HIF-1␣ in vitro, as judged by a complete upper shift of HIF-1␣. More importantly, we demonstrate that activation of the p42/p44 MAPK pathway in quiescent cells induced the phosphorylation and shift of HIF-1␣, which was abrogated in presence of the MEK inhibitor, PD 98059. Finally, we found that in a vascular endothelial growth factor promoter mutated at sites previously shown to be MAPK-sensitive (SP1/AP2-88-66 site), p42/p44 MAPK activation is sufficient to promote the transcriptional activity of HIF-1. This interaction between HIF-1␣ and p42/p44 MAPK suggests a cooperation between hypoxic and growth factor signals that ultimately leads to the increase in HIF-1-mediated gene expression.
Frontiers in Oncology, 2012
The hypoxia-inducible factor 1 (HIF-1), in addition to genetic and epigenetic changes, is largely... more The hypoxia-inducible factor 1 (HIF-1), in addition to genetic and epigenetic changes, is largely responsible for alterations in cell metabolism in hypoxic tumor cells. This transcription factor not only favors cell proliferation through the metabolic shift from oxidative phosphorylation to glycolysis and lactic acid production but also stimulates nutrient supply by mediating adaptive survival mechanisms. In this study we showed that glycogen synthesis is enhanced in non-cancer and cancer cells when exposed to hypoxia, resulting in a large increase in glycogen stores. Furthermore, we demonstrated that the mRNA and protein levels of the first enzyme of glycogenesis, phosphoglucomutase1 (PGM1), were increased in hypoxia. We showed that induction of glycogen storage as well as PGM1 expression were dependent on HIF-1 and HIF-2. We established that hypoxia-induced glycogen stores are rapidly mobilized in cells that are starved of glucose. Glycogenolysis allows these "hypoxia-preconditioned" cells to confront and survive glucose deprivation. In contrast normoxic control cells exhibit a high rate of cell death following glucose removal. These findings point to the important role of hypoxia and HIF in inducing mechanisms of rapid adaptation and survival in response to a decrease in oxygen tension. We propose that a decrease in pO 2 acts as an "alarm" that prepares the cells to face subsequent nutrient depletion and to survive.
The Journal of cell biology, 1993
Mitogen-activated protein kinases (p42mapk and p44mapk) are serine/threonine kinases that are act... more Mitogen-activated protein kinases (p42mapk and p44mapk) are serine/threonine kinases that are activated rapidly in cells stimulated with various extracellular signals. This activation is mediated via MAP kinase kinase (p45mapkk), a dual specificity kinase which phosphorylates two key regulatory threonine and tyrosine residues of MAP kinases. We reported previously that the persistent phase of MAP kinase activation is essential for mitogenically stimulated cells to pass the "restriction point" of the cell cycle. Here, using specific polyclonal antibodies and transfection of epitope-tagged recombinant MAP kinases we demonstrate that these signaling protein kinases undergo distinct spatio-temporal localization in growth factor-stimulated cells. In G0-arrested hamster fibroblasts the activator p45mapkk and MAP kinases (p42mapk, p44mapk) are mainly cytoplasmic. Subsequent to mitogenic stimulation by serum or alpha-thrombin both MAP kinase isoforms translocate into the nucleus. ...
Uploads
Papers by Jacques Pouysségur