Agricultural waste, particularly lignocellulose, has been used in the second generation of biogas... more Agricultural waste, particularly lignocellulose, has been used in the second generation of biogas. Coffee pulp and chicken feathers can be developed as biogas raw materials because of their suitability as a biogas substrate. This study investigates the effect of the percentage of total solids (TS), carbon to nitrogen ratio (C/N, g/g), and delignification pretreatment on biogas production from coffee pulp and chicken feathers, and aims to compose kinetics using the modified Gompertz model. The results show that adjusting the percentage of TS at low-level speeds up the degradation process, which increases chemical oxygen demand (COD) reduction and biogas production. COD reduction and biogas production increase optimally at the 25 (g/g) C/N ratio. Pretreatment delignification aids microorganisms in substrate decomposition, resulting in faster COD reduction and biogas conversion. The 25% TS and 25 (g/g) C/N ratio with the delignification process achieved the best biogas production, with...
Agricultural waste, particularly lignocellulose, has been used in the second generation of biogas... more Agricultural waste, particularly lignocellulose, has been used in the second generation of biogas. Coffee pulp and chicken feathers can be developed as biogas raw materials because of their suitability as a biogas substrate. This study investigates the effect of the percentage of total solids (TS), carbon to nitrogen ratio (C/N, g/g), and delignification pretreatment on biogas production from coffee pulp and chicken feathers, and aims to compose kinetics using the modified Gompertz model. The results show that adjusting the percentage of TS at low-level speeds up the degradation process, which increases chemical oxygen demand (COD) reduction and biogas production. COD reduction and biogas production increase optimally at the 25 (g/g) C/N ratio. Pretreatment delignification aids microorganisms in substrate decomposition, resulting in faster COD reduction and biogas conversion. The 25% TS and 25 (g/g) C/N ratio with the delignification process achieved the best biogas production, with...
Uploads
Papers by Isa Mahendra