Despite their important roles, the regulators for most metabolic pathways and biological processe... more Despite their important roles, the regulators for most metabolic pathways and biological processes remain elusive. Presently, the methods for identifying metabolic pathway and biological process regulators are intensively sought after. We developed a novel algorithm called triple-gene mutual interaction (TGMI) for identifying these regulators using high-throughput gene expression data. It first calculated the regulatory interactions among triple gene blocks (two pathway genes and one transcription factor (TF)), using conditional mutual information, and then identifies significantly interacted triple genes using a newly identified novel mutual interaction measure (MIM), which was substantiated to reflect strengths of regulatory interactions within each triple gene block. The TGMI calculated the MIM for each triple gene block and then examined its statistical significance using bootstrap. Finally, the frequencies of all TFs present in all significantly interacted triple gene blocks we...
Background The maize inbred line A188 is an attractive model for elucidation of gene function and... more Background The maize inbred line A188 is an attractive model for elucidation of gene function and improvement due to its high embryogenic capacity and many contrasting traits to the first maize reference genome, B73, and other elite lines. The lack of a genome assembly of A188 limits its use as a model for functional studies. Results Here, we present a chromosome-level genome assembly of A188 using long reads and optical maps. Comparison of A188 with B73 using both whole-genome alignments and read depths from sequencing reads identify approximately 1.1 Gb of syntenic sequences as well as extensive structural variation, including a 1.8-Mb duplication containing the Gametophyte factor1 locus for unilateral cross-incompatibility, and six inversions of 0.7 Mb or greater. Increased copy number of carotenoid cleavage dioxygenase 1 (ccd1) in A188 is associated with elevated expression during seed development. High ccd1 expression in seeds together with low expression of yellow endosperm 1 ...
Although lagging behind studies in humans and other mammals, studies of R-loops in plants have re... more Although lagging behind studies in humans and other mammals, studies of R-loops in plants have recently entered an exciting stage in which the roles of R-loops in gene expression, genome stability, epigenomic signatures, and plant development and stress responses are being elucidated. Here, we review the strengths and weaknesses of existing methodologies, which were largely developed for R-loop studies in mammals, and then discuss the potential challenges of applying these methodologies to R-loop studies in plants. We then focus on recent advances in the functional characterization of R-loops in Arabidopsis thaliana and rice. Recent studies in plants indicate that there are coordinated relationships between R-loops and gene expression, and between R-loops and epigenomic signatures that depend, in part, on the types of R-loops involved. Finally, we discuss the emerging roles of R-loops in plants and directions for future research.
Lignin is one of the major components of xylem cell walls in tree stems. The lignin in the wood o... more Lignin is one of the major components of xylem cell walls in tree stems. The lignin in the wood of most flowering plants (dicotyledonous angiosperms) is typically polymerized from three monolignol precursors, coniferyl alcohol, sinapyl alcohol, and p-coumaroyl alcohol, resulting in guaiacyl (G), syringyl (S), and hydroxyphenyl (H) subunits, respectively. In this study, we focus on the transcriptional regulation of a coniferaldehyde 5-hydroxylase (CAld5H2) gene, which encodes a key enzyme for sinapyl alcohol biosynthesis. We carried out a yeast one-hybrid (Y1H) screen to identify candidate upstream transcription factors (TFs) regulating CAld5H2. We obtained 12 upstream TFs as potential regulators of CAld5H2. One of these TF genes, BLH6a, encodes a BEL1-like homeodomain (BLH) protein and negatively regulated the CAld5H2 promoter activity. The direct regulation of CAld5H2 promoter by BLH6a was supported by chromatin immunoprecipitation–quantitative polymerase chain reaction (ChIP–qPCR)...
Betula L. (birch) is a pioneer hardwood tree species with ecological, economic, and evolutionary ... more Betula L. (birch) is a pioneer hardwood tree species with ecological, economic, and evolutionary importance in the Northern Hemisphere. We sequenced the Betula platyphylla genome and assembled the sequences into 14 chromosomes. The Betula genome lacks evidence of recent whole-genome duplication and has the same paleoploidy level as Vitis vinifera and Prunus mume. Phylogenetic analysis of lignin pathway genes coupled with tissue-specific expression patterns provided clues for understanding the formation of higher ratios of syringyl to guaiacyl lignin observed in Betula species. Our transcriptome analysis of leaf tissues under a time-series cold stress experiment revealed the presence of the MEKK1–MKK2–MPK4 cascade and six additional mitogen-activated protein kinases that can be linked to a gene regulatory network involving many transcription factors and cold tolerance genes. Our genomic and transcriptome analyses provide insight into the structures, features, and evolution of the B. ...
Leaves provide energy for plants, and consequently for animals, through photosynthesis. Despite t... more Leaves provide energy for plants, and consequently for animals, through photosynthesis. Despite their important functions, plant leaf developmental processes and their underlying mechanisms have not been well characterized. Here, we provide a holistic description of leaf developmental processes that is centered on cytokinins and their signaling functions. Cytokinins maintain the growth potential (pluripotency) of shoot apical meristems, which provide stem cells for the generation of leaf primordia during the initial stage of leaf formation; cytokinins and auxins, as well as their interaction, determine the phyllotaxis pattern. The activities of cytokinins in various regions of the leaf, especially at the margins, collectively determine the final leaf morphology (e.g., simple or compound). The area of a leaf is generally determined by the number and size of the cells in the leaf. Cytokinins promote cell division and increase cell expansion during the proliferation and expansion stage...
We report the acquisition of a high-quality haploid chromosome-scale genome assembly for the firs... more We report the acquisition of a high-quality haploid chromosome-scale genome assembly for the first time in a tree species, Eucommia ulmoides, which is known for its rubber biosynthesis and medicinal applications. The assembly was obtained by applying PacBio and Hi–C technologies to a haploid that we specifically generated. Compared to the initial genome release, this one has significantly improved assembly quality. The scaffold N50 (53.15 MB) increased 28-fold, and the repetitive sequence content (520 Mb) increased by 158.24 Mb, whereas the number of gaps decreased from 104,772 to 128. A total of 92.87% of the 26,001 predicted protein-coding genes identified with multiple strategies were anchored to the 17 chromosomes. A new whole-genome duplication event was superimposed on the earlier γ paleohexaploidization event, and the expansion of long terminal repeats contributed greatly to the evolution of the genome. The more primitive rubber biosynthesis of this species, as opposed to tha...
Background As an important epigenetic mark, 5-methylcytosine (5mC) methylation is involved in man... more Background As an important epigenetic mark, 5-methylcytosine (5mC) methylation is involved in many DNA-dependent biological processes and plays a role during development and differentiation of multicellular organisms. However, there is still a lack of knowledge about the dynamic aspects and the roles of global 5mC methylation in wood formation in tree trunks. In this study, we not only scrutinized single-base resolution methylomes of primary stems (PS), transitional stems (TS), and secondary stems (SS) of Populus trichocarpa using a high-throughput bisulfite sequencing technique, but also analyzed the effects of 5mC methylation on the expression of genes involved in wood formation. Results The overall average percentages of CG, CHG, and CHH methylation in poplar stems were ~ 53.6%, ~ 37.7%, and ~ 8.5%, respectively, and the differences of 5mC in genome-wide CG/CHG/CHH contexts among PS, TS, and SS were statistically significant (p
Gene expression data features high dimensionality, multicollinearity, and the existence of outlie... more Gene expression data features high dimensionality, multicollinearity, and the existence of outlier or non-Gaussian distribution noise, which make the identification of true regulatory genes controlling a biological process or pathway difficult. In this study, we embedded the Huber-Berhu (HB) regression into the partial least squares (PLS) framework and created a new method called HB-PLS for predicting biological process or pathway regulators through construction of regulatory networks. PLS is an alternative to ordinary least squares (OLS) for handling multicollinearity in high dimensional data. The Huber loss is more robust to outliers than square loss, and the Berhu penalty can obtain a better balance between the ℓ2 penalty and the ℓ1 penalty. HB-PLS therefore inherits the advantages of the Huber loss, the Berhu penalty, and PLS. To solve the Huber-Berhu regression, a fast proximal gradient descent method was developed; the HB regression runs much faster than CVX, a Matlab-based mo...
One of the most important attributes of a genome is genome size, which can to a large extent refl... more One of the most important attributes of a genome is genome size, which can to a large extent reflect the evolutionary history and diversity of a plant species. However, studies on genome size diversity within a species are still very limited. This study aims to clarify the variation in genome sizes of Chinese jujube and sour jujube, and to characterize if there exists an association between genome sizes and geographical variation. We measured the genome sizes of 301 cultivars of Chinese jujube and 81 genotypes of sour jujube by flow cytometry. Ten fruit traits, including weight, vertical diameter, horizontal diameter, size, total acids, total sugar, monosaccharide, disaccharide, soluble solids, and ascorbic acid were measured in 243 cultivars of Chinese jujube. The estimated genome sizes of Chinese jujube cultivars ranged from 300.77 Mb to 640.94 Mb, with an average of 408.54 Mb, with the highest number of cultivars (20.93%) falling in the range of 334.787 to 368.804 Mb. The genome ...
Elaeagnus angustifolia is one of the most extensively afforested tree species in environment-hars... more Elaeagnus angustifolia is one of the most extensively afforested tree species in environment-harsh regions of northern China. Despite its exceptional tolerance to saline soil, the intrinsic adaptive physiology has not been revealed. In this study, we investigated the growth, organ-level ionic relations and organic osmoregulation of the seedlings hydroponically treated with 0, 100 and 200 mM NaCl for 30 days. We found that the growth characteristics and the whole-plant dry weight were not obviously stunted, but instead, were even slightly stimulated by the treatment of 100 mM NaCl. In contrast, these traits were significantly inhibited by 200 mM NaCl treatment. Interestingly, as compared with the control (0 mM NaCl), both 100 and 200 mM NaCl treatments had a promotional effect on root growth as evidenced by 26.3% and 2.4% increases in root dry weight, respectively. Roots had the highest Na + and Clconcentrations and obviously served as the sink for the net increased Na + and Cl-, while, stems might maintain the capacity of effective Na + constraint, resulting in reduced Na + transport to the leaves. K + , Ca 2+ and Mg 2+ concentrations in three plant organs of NaCl-treated seedlings presented a substantial decline, eventually leading to an enormously drop of K + /Na + ratio. As the salt concentration increased, proline and soluble protein contents continuously exhibited a prominent and a relatively tardy accumulation, respectively, whereas soluble sugar firstly fell to a significant level and then regained to a level that is close to that of the control. Taken together, our results provided quantitative measures that revealed some robust adaptive physiological mechanisms underpinning E. angustifolia's moderately high salt tolerance, and those mechanisms comprise scalable capacity for root Na + and Clstorage, effectively constrained transportation of Na + from stems to leaves, root compensatory growth, as well as an immediate and prominent leaf proline accumulation.
The Plant journal : for cell and molecular biology, Jan 29, 2018
Epicuticular waxes provide a hydrophobic barrier that protects land plants from environmental str... more Epicuticular waxes provide a hydrophobic barrier that protects land plants from environmental stresses. To elucidate the molecular functions of maize glossy mutants that reduce accumulation of epicuticular waxes, eight non-allelic glossy mutants were subjected to transcriptomic comparisons with their respective wild-type siblings. Transcriptomic comparisons identified 2,279 differential expression (DE) genes. Other glossy genes tended to be down-regulated in glossy mutants; in contrast stress-responsive pathways were induced in mutants. Gene co-expression network (GCN) analysis found that glossy genes were clustered, suggestive of co-regulation. Genes potentially regulating the accumulation of glossy gene transcripts were identified via a pathway level co-expression (PLC) analysis. Expression data from diverse organs showed that maize glossy genes are generally active in young leaves, silks and tassels, while largely inactive in seeds and roots. Through reverse genetics, a DE gene h...
microRNAs (miRNAs) are endogenous small non-coding RNAs that bind to the target mRNAs for cleavag... more microRNAs (miRNAs) are endogenous small non-coding RNAs that bind to the target mRNAs for cleavage and/or translational repression, leading to gene silencing. We previously developed Short Tandem Target Mimic (STTM) technology to deactivate endogenous miRNAs in Arabidopsis. Here, we created a resource of hundreds of STTMs that target both conserved and species-specific miRNAs in Arabidopsis, tomato, rice and maize for functional interrogation of miRNAs. We not only showed the overall functions of miRNAs in plant development, but also demonstrated that tissue-specific inactivation of certain miRNAs led to an increase in rice grain size without adversely affecting overall plant growth and development. Inducible expression of STTM was fulfilled for dissecting functions of miRNAs spatio-temporally. RNA-seq and small RNA-seq analyses of STTM156/157 and STTM165/166 transgenic plants revealed roles of these miRNAs in plant hormone biosynthesis and activation, secondary metabolism, ion chan...
We have modified a multitude of transcription factors (TFs) in numerous plant species and some an... more We have modified a multitude of transcription factors (TFs) in numerous plant species and some animal species, and obtained transgenic lines that exhibit phenotypic alterations. Whenever we observe phenotypic changes in a TF's transgenic lines, we are always eager to identify its target genes, collaborative regulators and even upstream high hierarchical regulators. This issue can be addressed by establishing a multilayered hierarchical gene regulatory network (ML-hGRN) centered around a given TF. In this article, a practical approach for constructing an ML-hGRN centered on a TF using a combined approach of top-down and bottom-up network construction methods is described. Strategies for constructing ML-hGRNs are vitally important, as these networks provide key information to advance our understanding of how biological processes are regulated.
Many factors have been reported to affect rainbow trout egg quality, among which, postovulatory a... more Many factors have been reported to affect rainbow trout egg quality, among which, postovulatory aging is one of the most significant causes as reared rainbow trout do not usually volitionally oviposit the ovulated eggs. In order to uncover the genetic regulation underling egg deterioration caused by postovulatory aging in rainbow trout, mitochondrial genome-encoded small RNA (mitosRNAs) were analyzed from unfertilized eggs on Days 1, 7, and 14 postovulation with fertilization rates of 91.8, 73.4, and less than 50 %, respectively. A total of 248 mitosRNAs were identified from Illumina high-throughput sequencing of the small RNA libraries derived from the eggs of ten females. Ninety-eight of the small RNAs exhibited more than a threefold difference in expression between eggs from females exhibiting high fertilization rates at Day 1 and low fertilization rates at Day 14. The differentially expressed mitosRNAs were predominantly derived from mitochondrial D-loop, tRNA, rRNA, COII, and C...
The establishment of a collaborative network of transcription factors (TFs) followed by decomposi... more The establishment of a collaborative network of transcription factors (TFs) followed by decomposition and then construction of subnetworks is an effective way to obtain sets of collaborative TFs; each set controls a biological process or a complex trait. We previously developed eight gene association methods for genome-wide coexpression analysis between each TF and all other genomic genes and then constructing collaborative networks of TFs but only one algorithm, called Triple-Link Algorithm, for building collaborative subnetworks. In this study, we developed two more algorithms, Single Seed-Growing Algorithm (SSGA) and Multi-Seed Growing Algorithm (MSGA), for building collaborative subnetworks of TFs by identifying the fully-linked triple-node seeds from a decomposed collaborative network and then growing them into subnetworks with two different strategies. The subnetworks built from the three algorithms described above were comparatively appraised in terms of both functional cohesion and intra-subnetwork association strengths versus inter-subnetwork association strengths. We concluded that SSGA and MSGA, which performed more systemic comparisons and analyses of edge weights and network connectivity during subnetwork construction processes, yielded more functional and cohesive subnetworks than Triple-Link Algorithm. Together, these three algorithms provide alternate approaches for acquiring subnetworks of collaborative TFs. We also presented a framework to outline how to use these three algorithms to obtain collaborative TF sets governing biological processes or complex traits.
We investigated the mechanisms of mushroom toxin resistance in the Drosophila Genetic Reference P... more We investigated the mechanisms of mushroom toxin resistance in the Drosophila Genetic Reference Panel (DGRP) fly lines, using genome-wide association studies (GWAS). While Drosophila melanogaster avoids mushrooms in nature, some lines are surprisingly resistant to α-amanitin-a toxin found solely in mushrooms. This resistance may represent a pre-adaptation, which might enable this species to invade the mushroom niche in the future. Although our previous microarray study had strongly suggested that pesticide-metabolizing detoxification genes confer α-amanitin resistance in a Taiwanese D. melanogaster line Ama-KTT, none of the traditional detoxification genes were among the top candidate genes resulting from the GWAS in the current study. Instead, we identified Megalin, Tequila, and widerborst as candidate genes underlying the α-amanitin resistance phenotype in the North American DGRP lines, all three of which are connected to the Target of Rapamycin (TOR) pathway. Both widerborst and ...
Despite their important roles, the regulators for most metabolic pathways and biological processe... more Despite their important roles, the regulators for most metabolic pathways and biological processes remain elusive. Presently, the methods for identifying metabolic pathway and biological process regulators are intensively sought after. We developed a novel algorithm called triple-gene mutual interaction (TGMI) for identifying these regulators using high-throughput gene expression data. It first calculated the regulatory interactions among triple gene blocks (two pathway genes and one transcription factor (TF)), using conditional mutual information, and then identifies significantly interacted triple genes using a newly identified novel mutual interaction measure (MIM), which was substantiated to reflect strengths of regulatory interactions within each triple gene block. The TGMI calculated the MIM for each triple gene block and then examined its statistical significance using bootstrap. Finally, the frequencies of all TFs present in all significantly interacted triple gene blocks we...
Background The maize inbred line A188 is an attractive model for elucidation of gene function and... more Background The maize inbred line A188 is an attractive model for elucidation of gene function and improvement due to its high embryogenic capacity and many contrasting traits to the first maize reference genome, B73, and other elite lines. The lack of a genome assembly of A188 limits its use as a model for functional studies. Results Here, we present a chromosome-level genome assembly of A188 using long reads and optical maps. Comparison of A188 with B73 using both whole-genome alignments and read depths from sequencing reads identify approximately 1.1 Gb of syntenic sequences as well as extensive structural variation, including a 1.8-Mb duplication containing the Gametophyte factor1 locus for unilateral cross-incompatibility, and six inversions of 0.7 Mb or greater. Increased copy number of carotenoid cleavage dioxygenase 1 (ccd1) in A188 is associated with elevated expression during seed development. High ccd1 expression in seeds together with low expression of yellow endosperm 1 ...
Although lagging behind studies in humans and other mammals, studies of R-loops in plants have re... more Although lagging behind studies in humans and other mammals, studies of R-loops in plants have recently entered an exciting stage in which the roles of R-loops in gene expression, genome stability, epigenomic signatures, and plant development and stress responses are being elucidated. Here, we review the strengths and weaknesses of existing methodologies, which were largely developed for R-loop studies in mammals, and then discuss the potential challenges of applying these methodologies to R-loop studies in plants. We then focus on recent advances in the functional characterization of R-loops in Arabidopsis thaliana and rice. Recent studies in plants indicate that there are coordinated relationships between R-loops and gene expression, and between R-loops and epigenomic signatures that depend, in part, on the types of R-loops involved. Finally, we discuss the emerging roles of R-loops in plants and directions for future research.
Lignin is one of the major components of xylem cell walls in tree stems. The lignin in the wood o... more Lignin is one of the major components of xylem cell walls in tree stems. The lignin in the wood of most flowering plants (dicotyledonous angiosperms) is typically polymerized from three monolignol precursors, coniferyl alcohol, sinapyl alcohol, and p-coumaroyl alcohol, resulting in guaiacyl (G), syringyl (S), and hydroxyphenyl (H) subunits, respectively. In this study, we focus on the transcriptional regulation of a coniferaldehyde 5-hydroxylase (CAld5H2) gene, which encodes a key enzyme for sinapyl alcohol biosynthesis. We carried out a yeast one-hybrid (Y1H) screen to identify candidate upstream transcription factors (TFs) regulating CAld5H2. We obtained 12 upstream TFs as potential regulators of CAld5H2. One of these TF genes, BLH6a, encodes a BEL1-like homeodomain (BLH) protein and negatively regulated the CAld5H2 promoter activity. The direct regulation of CAld5H2 promoter by BLH6a was supported by chromatin immunoprecipitation–quantitative polymerase chain reaction (ChIP–qPCR)...
Betula L. (birch) is a pioneer hardwood tree species with ecological, economic, and evolutionary ... more Betula L. (birch) is a pioneer hardwood tree species with ecological, economic, and evolutionary importance in the Northern Hemisphere. We sequenced the Betula platyphylla genome and assembled the sequences into 14 chromosomes. The Betula genome lacks evidence of recent whole-genome duplication and has the same paleoploidy level as Vitis vinifera and Prunus mume. Phylogenetic analysis of lignin pathway genes coupled with tissue-specific expression patterns provided clues for understanding the formation of higher ratios of syringyl to guaiacyl lignin observed in Betula species. Our transcriptome analysis of leaf tissues under a time-series cold stress experiment revealed the presence of the MEKK1–MKK2–MPK4 cascade and six additional mitogen-activated protein kinases that can be linked to a gene regulatory network involving many transcription factors and cold tolerance genes. Our genomic and transcriptome analyses provide insight into the structures, features, and evolution of the B. ...
Leaves provide energy for plants, and consequently for animals, through photosynthesis. Despite t... more Leaves provide energy for plants, and consequently for animals, through photosynthesis. Despite their important functions, plant leaf developmental processes and their underlying mechanisms have not been well characterized. Here, we provide a holistic description of leaf developmental processes that is centered on cytokinins and their signaling functions. Cytokinins maintain the growth potential (pluripotency) of shoot apical meristems, which provide stem cells for the generation of leaf primordia during the initial stage of leaf formation; cytokinins and auxins, as well as their interaction, determine the phyllotaxis pattern. The activities of cytokinins in various regions of the leaf, especially at the margins, collectively determine the final leaf morphology (e.g., simple or compound). The area of a leaf is generally determined by the number and size of the cells in the leaf. Cytokinins promote cell division and increase cell expansion during the proliferation and expansion stage...
We report the acquisition of a high-quality haploid chromosome-scale genome assembly for the firs... more We report the acquisition of a high-quality haploid chromosome-scale genome assembly for the first time in a tree species, Eucommia ulmoides, which is known for its rubber biosynthesis and medicinal applications. The assembly was obtained by applying PacBio and Hi–C technologies to a haploid that we specifically generated. Compared to the initial genome release, this one has significantly improved assembly quality. The scaffold N50 (53.15 MB) increased 28-fold, and the repetitive sequence content (520 Mb) increased by 158.24 Mb, whereas the number of gaps decreased from 104,772 to 128. A total of 92.87% of the 26,001 predicted protein-coding genes identified with multiple strategies were anchored to the 17 chromosomes. A new whole-genome duplication event was superimposed on the earlier γ paleohexaploidization event, and the expansion of long terminal repeats contributed greatly to the evolution of the genome. The more primitive rubber biosynthesis of this species, as opposed to tha...
Background As an important epigenetic mark, 5-methylcytosine (5mC) methylation is involved in man... more Background As an important epigenetic mark, 5-methylcytosine (5mC) methylation is involved in many DNA-dependent biological processes and plays a role during development and differentiation of multicellular organisms. However, there is still a lack of knowledge about the dynamic aspects and the roles of global 5mC methylation in wood formation in tree trunks. In this study, we not only scrutinized single-base resolution methylomes of primary stems (PS), transitional stems (TS), and secondary stems (SS) of Populus trichocarpa using a high-throughput bisulfite sequencing technique, but also analyzed the effects of 5mC methylation on the expression of genes involved in wood formation. Results The overall average percentages of CG, CHG, and CHH methylation in poplar stems were ~ 53.6%, ~ 37.7%, and ~ 8.5%, respectively, and the differences of 5mC in genome-wide CG/CHG/CHH contexts among PS, TS, and SS were statistically significant (p
Gene expression data features high dimensionality, multicollinearity, and the existence of outlie... more Gene expression data features high dimensionality, multicollinearity, and the existence of outlier or non-Gaussian distribution noise, which make the identification of true regulatory genes controlling a biological process or pathway difficult. In this study, we embedded the Huber-Berhu (HB) regression into the partial least squares (PLS) framework and created a new method called HB-PLS for predicting biological process or pathway regulators through construction of regulatory networks. PLS is an alternative to ordinary least squares (OLS) for handling multicollinearity in high dimensional data. The Huber loss is more robust to outliers than square loss, and the Berhu penalty can obtain a better balance between the ℓ2 penalty and the ℓ1 penalty. HB-PLS therefore inherits the advantages of the Huber loss, the Berhu penalty, and PLS. To solve the Huber-Berhu regression, a fast proximal gradient descent method was developed; the HB regression runs much faster than CVX, a Matlab-based mo...
One of the most important attributes of a genome is genome size, which can to a large extent refl... more One of the most important attributes of a genome is genome size, which can to a large extent reflect the evolutionary history and diversity of a plant species. However, studies on genome size diversity within a species are still very limited. This study aims to clarify the variation in genome sizes of Chinese jujube and sour jujube, and to characterize if there exists an association between genome sizes and geographical variation. We measured the genome sizes of 301 cultivars of Chinese jujube and 81 genotypes of sour jujube by flow cytometry. Ten fruit traits, including weight, vertical diameter, horizontal diameter, size, total acids, total sugar, monosaccharide, disaccharide, soluble solids, and ascorbic acid were measured in 243 cultivars of Chinese jujube. The estimated genome sizes of Chinese jujube cultivars ranged from 300.77 Mb to 640.94 Mb, with an average of 408.54 Mb, with the highest number of cultivars (20.93%) falling in the range of 334.787 to 368.804 Mb. The genome ...
Elaeagnus angustifolia is one of the most extensively afforested tree species in environment-hars... more Elaeagnus angustifolia is one of the most extensively afforested tree species in environment-harsh regions of northern China. Despite its exceptional tolerance to saline soil, the intrinsic adaptive physiology has not been revealed. In this study, we investigated the growth, organ-level ionic relations and organic osmoregulation of the seedlings hydroponically treated with 0, 100 and 200 mM NaCl for 30 days. We found that the growth characteristics and the whole-plant dry weight were not obviously stunted, but instead, were even slightly stimulated by the treatment of 100 mM NaCl. In contrast, these traits were significantly inhibited by 200 mM NaCl treatment. Interestingly, as compared with the control (0 mM NaCl), both 100 and 200 mM NaCl treatments had a promotional effect on root growth as evidenced by 26.3% and 2.4% increases in root dry weight, respectively. Roots had the highest Na + and Clconcentrations and obviously served as the sink for the net increased Na + and Cl-, while, stems might maintain the capacity of effective Na + constraint, resulting in reduced Na + transport to the leaves. K + , Ca 2+ and Mg 2+ concentrations in three plant organs of NaCl-treated seedlings presented a substantial decline, eventually leading to an enormously drop of K + /Na + ratio. As the salt concentration increased, proline and soluble protein contents continuously exhibited a prominent and a relatively tardy accumulation, respectively, whereas soluble sugar firstly fell to a significant level and then regained to a level that is close to that of the control. Taken together, our results provided quantitative measures that revealed some robust adaptive physiological mechanisms underpinning E. angustifolia's moderately high salt tolerance, and those mechanisms comprise scalable capacity for root Na + and Clstorage, effectively constrained transportation of Na + from stems to leaves, root compensatory growth, as well as an immediate and prominent leaf proline accumulation.
The Plant journal : for cell and molecular biology, Jan 29, 2018
Epicuticular waxes provide a hydrophobic barrier that protects land plants from environmental str... more Epicuticular waxes provide a hydrophobic barrier that protects land plants from environmental stresses. To elucidate the molecular functions of maize glossy mutants that reduce accumulation of epicuticular waxes, eight non-allelic glossy mutants were subjected to transcriptomic comparisons with their respective wild-type siblings. Transcriptomic comparisons identified 2,279 differential expression (DE) genes. Other glossy genes tended to be down-regulated in glossy mutants; in contrast stress-responsive pathways were induced in mutants. Gene co-expression network (GCN) analysis found that glossy genes were clustered, suggestive of co-regulation. Genes potentially regulating the accumulation of glossy gene transcripts were identified via a pathway level co-expression (PLC) analysis. Expression data from diverse organs showed that maize glossy genes are generally active in young leaves, silks and tassels, while largely inactive in seeds and roots. Through reverse genetics, a DE gene h...
microRNAs (miRNAs) are endogenous small non-coding RNAs that bind to the target mRNAs for cleavag... more microRNAs (miRNAs) are endogenous small non-coding RNAs that bind to the target mRNAs for cleavage and/or translational repression, leading to gene silencing. We previously developed Short Tandem Target Mimic (STTM) technology to deactivate endogenous miRNAs in Arabidopsis. Here, we created a resource of hundreds of STTMs that target both conserved and species-specific miRNAs in Arabidopsis, tomato, rice and maize for functional interrogation of miRNAs. We not only showed the overall functions of miRNAs in plant development, but also demonstrated that tissue-specific inactivation of certain miRNAs led to an increase in rice grain size without adversely affecting overall plant growth and development. Inducible expression of STTM was fulfilled for dissecting functions of miRNAs spatio-temporally. RNA-seq and small RNA-seq analyses of STTM156/157 and STTM165/166 transgenic plants revealed roles of these miRNAs in plant hormone biosynthesis and activation, secondary metabolism, ion chan...
We have modified a multitude of transcription factors (TFs) in numerous plant species and some an... more We have modified a multitude of transcription factors (TFs) in numerous plant species and some animal species, and obtained transgenic lines that exhibit phenotypic alterations. Whenever we observe phenotypic changes in a TF's transgenic lines, we are always eager to identify its target genes, collaborative regulators and even upstream high hierarchical regulators. This issue can be addressed by establishing a multilayered hierarchical gene regulatory network (ML-hGRN) centered around a given TF. In this article, a practical approach for constructing an ML-hGRN centered on a TF using a combined approach of top-down and bottom-up network construction methods is described. Strategies for constructing ML-hGRNs are vitally important, as these networks provide key information to advance our understanding of how biological processes are regulated.
Many factors have been reported to affect rainbow trout egg quality, among which, postovulatory a... more Many factors have been reported to affect rainbow trout egg quality, among which, postovulatory aging is one of the most significant causes as reared rainbow trout do not usually volitionally oviposit the ovulated eggs. In order to uncover the genetic regulation underling egg deterioration caused by postovulatory aging in rainbow trout, mitochondrial genome-encoded small RNA (mitosRNAs) were analyzed from unfertilized eggs on Days 1, 7, and 14 postovulation with fertilization rates of 91.8, 73.4, and less than 50 %, respectively. A total of 248 mitosRNAs were identified from Illumina high-throughput sequencing of the small RNA libraries derived from the eggs of ten females. Ninety-eight of the small RNAs exhibited more than a threefold difference in expression between eggs from females exhibiting high fertilization rates at Day 1 and low fertilization rates at Day 14. The differentially expressed mitosRNAs were predominantly derived from mitochondrial D-loop, tRNA, rRNA, COII, and C...
The establishment of a collaborative network of transcription factors (TFs) followed by decomposi... more The establishment of a collaborative network of transcription factors (TFs) followed by decomposition and then construction of subnetworks is an effective way to obtain sets of collaborative TFs; each set controls a biological process or a complex trait. We previously developed eight gene association methods for genome-wide coexpression analysis between each TF and all other genomic genes and then constructing collaborative networks of TFs but only one algorithm, called Triple-Link Algorithm, for building collaborative subnetworks. In this study, we developed two more algorithms, Single Seed-Growing Algorithm (SSGA) and Multi-Seed Growing Algorithm (MSGA), for building collaborative subnetworks of TFs by identifying the fully-linked triple-node seeds from a decomposed collaborative network and then growing them into subnetworks with two different strategies. The subnetworks built from the three algorithms described above were comparatively appraised in terms of both functional cohesion and intra-subnetwork association strengths versus inter-subnetwork association strengths. We concluded that SSGA and MSGA, which performed more systemic comparisons and analyses of edge weights and network connectivity during subnetwork construction processes, yielded more functional and cohesive subnetworks than Triple-Link Algorithm. Together, these three algorithms provide alternate approaches for acquiring subnetworks of collaborative TFs. We also presented a framework to outline how to use these three algorithms to obtain collaborative TF sets governing biological processes or complex traits.
We investigated the mechanisms of mushroom toxin resistance in the Drosophila Genetic Reference P... more We investigated the mechanisms of mushroom toxin resistance in the Drosophila Genetic Reference Panel (DGRP) fly lines, using genome-wide association studies (GWAS). While Drosophila melanogaster avoids mushrooms in nature, some lines are surprisingly resistant to α-amanitin-a toxin found solely in mushrooms. This resistance may represent a pre-adaptation, which might enable this species to invade the mushroom niche in the future. Although our previous microarray study had strongly suggested that pesticide-metabolizing detoxification genes confer α-amanitin resistance in a Taiwanese D. melanogaster line Ama-KTT, none of the traditional detoxification genes were among the top candidate genes resulting from the GWAS in the current study. Instead, we identified Megalin, Tequila, and widerborst as candidate genes underlying the α-amanitin resistance phenotype in the North American DGRP lines, all three of which are connected to the Target of Rapamycin (TOR) pathway. Both widerborst and ...
Uploads
Papers by Hairong Wei