Papers by Guglielmina Diolaiuti
Ice-free areas are increasing worldwide due to the dramatic glacier shrinkage and are undergoing ... more Ice-free areas are increasing worldwide due to the dramatic glacier shrinkage and are undergoing rapid colonization by multiple lifeforms, thus representing key environments to study ecosystem development. Soils have a complex vertical structure. However, we know little about how microbial and animal communities differ across soil depths and development stages during the colonization of deglaciated terrains, how these differences evolve through time, and whether patterns are consistent among different taxonomic groups. Here, we used environmental DNA metabarcoding to describe how community diversity and composition of six groups (Eukaryota, Bacteria, Mycota, Collembola, Insecta, Oligochaeta) differ between surface (0-5 cm) and relatively deep (7.5-20 cm) soils at different stages of development across five Alpine glaciers. Taxonomic diversity increased with time since glacier retreat and with soil evolution; the pattern was consistent across different groups and soil depths. For Euk...
ABSTRACTDespite the harsh environmental conditions, glacier surfaces host metabolically active ba... more ABSTRACTDespite the harsh environmental conditions, glacier surfaces host metabolically active bacterial communities, especially in cryoconite holes, small ponds filled with melting water and with a fine-grained sediment at the bottom. We investigated the daily changes in transcript profiles of the microbial community of a cryoconite hole on an Alpine glacier. Using a metatranscriptomic shotgun sequencing, we observed different level of expression of the main carbon and energy metabolisms along the day. Oxygenic and anoxygenic photosynthesis peaked their activity at the sunrise and sunset, respectively, and showed an inhibition at midday, in response to high solar radiation. Carbon fixation genes were expressed all day long with the lowest coverage at night. Different microbial populations were responsible for this metabolic function along the day. Cyanobacteria and Algae were the most active primary producers at the sunrise and the sunset, whereas at night and at noon chemosyntheti...
We focus here on modelling the meteorological parameters most influencing snow/ice melting over a... more We focus here on modelling the meteorological parameters most influencing snow/ice melting over an alpine glacier. Specifically, we consider shortwave and longwave downward radiation, and air temperature. We set up and test a methodology for their accurate distribution at the glacier surface, which can be applied whenever: i) supraglacial meteoro-logical measurements are available or ii) weather data are acquired from a station quite close to the glacier. As a suitable site to test our approach we selected the Forni Glacier, in the Italian Alps, where an Automatic Weather Station (AWS) has been running since autumn 2005 thus giving a robust dataset for developing a field based modeling approach. First, we modelled and distributed the incoming solar radiation by taking into account actual atmospheric conditions, glacier topography and shading. Then, we modelled the incoming longwave radiation considering cloud-cover and air temperature. Third, we investigated a local lapse rate to depict the yearly variability of the vertical air temperature gradient, to assess the actual thermal conditions at different elevations. Finally, we compared the modeled values against data collected on the field. The results display that during the glacier ablation period (i.e.: May-September): i) our approach provides a good depiction of both point incoming solar and infrared radiation fluxes, ii) the spatial distribution of the incoming solar radiation we developed is satisfactory, iii) our tests suggest that the incoming longwave fluxes can be considered constant over the whole glacier ablation area thus neglecting its spatial distribution, and iv) the application of a local lapse rate provides a good distribution of air temperature at the glacier surface
Atmospheric Environment, 2021
Abstract Several anthropogenic activities have undergone major changes following the spread of th... more Abstract Several anthropogenic activities have undergone major changes following the spread of the COVID-19 pandemic, which in turn has had consequences on the environment. The effect on air pollution has been studied in detail in the literature, although some pollutants, such as ammonia (NH3), have received comparatively less attention to date. Focusing on the case of Lombardy in Northern Italy, this study aimed to evaluate changes in NH3 atmospheric concentration on a temporal scale (the years from 2013 to 2019 compared to 2020) and on a spatial scale (countryside, city, and mountain areas). For this purpose, ground-based (from public air quality control units scattered throughout the region) and satellite observations (from IASI sensors on board MetOp-A and MetOp-B) were collected and analyzed. For ground-based measurements, a marked spatial variability is observed between the different areas while, as regards the comparison between periods, statistically significant differences were observed only for the countryside areas (+31% in 2020 compared to previous years). The satellite data show similar patterns but do not present statistically significant differences neither between different areas, nor between the two periods. In general, there have been no reduction effects of atmospheric NH3 as a consequence of COVID-19. This calls into question the role of the agricultural sector, which is known to be the largest responsible for NH3 emissions. Even if the direct comparison between the two datasets shows little correlation, their contextual consideration allows making more robust considerations regarding air pollutants.
Cryoconite holes, ponds full of melting water with a sediment on the bottom, are hotspot of biodi... more Cryoconite holes, ponds full of melting water with a sediment on the bottom, are hotspot of biodiversity of glacier surface. They host a metabolically active bacterial community that is involved in different dynamics concerning glacier ecosystems. Indeed, they are responsible of organic matter production and with other microorganisms establish a real microecosystem. Cryoconite holes have been described in different areas of the world (e.g., Arctic, Antarctic, Alps, Himalaya), and with this study we will provide the first description of bacterial communities of cryoconite holes of the Andes in South America. We collected samples on three high elevation glaciers of the Andes (Iver, Iver East and Morado glaciers) and two Patagonian glaciers located at sea level (Exploradores glacier and Perito Moreno). Results show that the most abundant orders are Burkholderiales, Cytophagales, Sphingobacteriales, Actinomycetales, Pseudomonadales, Rhodospiarillales, Rhizobiales, Sphingomonadales and B...
The ongoing glacier shrinkage in the Alps requires frequent updates of glacier outlines to provid... more The ongoing glacier shrinkage in the Alps requires frequent updates of glacier outlines to provide an accurate database for monitoring, modelling purposes (e.g. determination of runoff , mass balance, or future glacier extent), and other applications. With the launch of the first Sentinel-2 (S2) satellite in 2015, it became possible to create a consistent, Alpine-wide glacier inventory with an unprecedented spatial resolution of 10 m. The first S2 images from August 2015 already provided excellent mapping conditions for most glacierized regions in the Alps and were used as a base for the compilation of a new Alpine-wide glacier inventory in a collaborative team effort. In all countries, glacier outlines from the latest national inventories have been used as a guide to compile an update consistent with the respective previous interpretation. The automated mapping of clean glacier ice was straightforward using the band ratio method, but the numerous debris-covered glaciers required intense manual editing. Cloud cover over many glaciers in Italy required also including S2 scenes from 2016. The outline uncertainty was determined with digitizing of 14 glaciers several times by all participants. Topographic information for all glaciers was obtained from the ALOS AW3D30 digital elevation model (DEM). Overall, we derived a total glacier area of 1806 ± 60 km 2 when considering 4395 glaciers > 0.01 km 2. This is 14 % (−1.2 % a −1) less than the 2100 km 2 derived from Landsat in 2003 and indicates an unabated continuation of glacier shrinkage in the Alps since the mid-1980s. It is a lower-bound estimate, as due to the higher spatial resolution of S2 many small glaciers were additionally mapped or increased in size compared to 2003. Median elevations peak around 3000 m a.s.l., with a high variability that depends on location and aspect. The uncertainty assessment revealed locally strong differences in interpretation of debris-covered glaciers, resulting in limitations for change assessment when using glacier extents digitized by different analysts. The inventory is available at
La Houille Blanche, 2019
Remote sensing investigations permit to map and describe at a regional scale and with a multi-tem... more Remote sensing investigations permit to map and describe at a regional scale and with a multi-temporal approach mountain glaciers. In this work, we present some results from the New Italian Glacier Inventory which we developed by analyzing high-resolution color orthophotos acquired in the timeframe 2005–2011. In particular, in this paper we focused on each Italian Alpine Region, describing in detail glacier extent and features of each mountain group. Although Italian glaciologists were the first to produce glacier inventories (developing a glacier database as early as the beginning of the 20th century), during the last three decades only regional and local glacier lists have been developed. Therefore, a comprehensive study describing the actual whole Italian glaciation has been lacking. The New Italian Glacier Inventory describes 903 glaciers covering altogether an area of 368.10 km2 ± 2%. We found that about 84% of the total number of ice bodies is composed of glaciers smaller than...
Environmental Pollution, 2019
Contamination by plastic debris has been documented in the most region of the world, but their oc... more Contamination by plastic debris has been documented in the most region of the world, but their occurrence in high mountain areas has not been investigated to date. Here we present the first evidence of the occurrence of microplastic in any terrestrial glacier environment. In details, in the supraglacial debris of the Forni Glacier (Italian Alps), we documented the occurrence of 74.4 ± 28.3 SE items kg-1 of sediment (dry weight), an amount that is within the range of variability of microplastic contamination observed in marine and coastal sediments in Europe. Most plastic items were made by polyesters, followed by polyamide, polyethylene and polypropylene. We estimated that the whole ablation area of Forni Glacier should host 131-162 million plastic items. Microplastic can be released directly into high elevation areas by human activities in the mountain or be transported by wind to high altitude. The amount of microplastic on Forni Glacier may derive from concentration of debris from the large accumulation area to the relatively smaller ablation area due to glacier flow and melting.
Condensed Matter, 2018
Glaciers are important fresh-water reservoirs for our planet. Although they are often located at ... more Glaciers are important fresh-water reservoirs for our planet. Although they are often located at high elevations or in remote areas, glacial ecosystems are not pristine, as many pollutants can undergo long-range atmospheric transport and be deposited on glacier surface, where they can be stored for long periods of time, and then be released into the down-valley ecosystems. Understanding the dynamics of these pollutants in glaciers is therefore important for assessing their environmental fate. To this aim, it is important to study cryoconite holes, small ponds filled with water and with a layer of sediment, the cryoconite, at the bottom, which occur on the surface of most glaciers. Indeed, these environments are hotspots of biodiversity on glacier surface as they host metabolically active bacterial communities that include generalist taxa able to degrade pollutants. In this work, we aim to review the studies that have already investigated pollutant (e.g., chlorpyrifos and polychlorin...
Annals of Geophysics, 2017
Radar exploration supports glaciological studies playing several roles in ice exploration such as... more Radar exploration supports glaciological studies playing several roles in ice exploration such as determining ice thickness and volume, describing ice and snow internal layering and characterizing crevassed areas. The method, widely used with full success on Polar areas, encounters more difficulties when applied to survey mountain glaciers like the Alpine and Himalayan ones. Among them, these difficulties can be addressed to the different physical characteristics of temperate ice and to logistic difficulties related to performing field operations at high elevations on areas where crevasses, seracs and ice-falls are present, making more complicate and complex the glacier surface. In the framework of the SHARE-PAPRIKA and the SHARE-STEL-VIO Projects, we performed some preliminary measurements on Careser, Sforzellina and Forni glaciers (Ortles-Cevedale Group, Italy), to evaluate efficiency and applicability of a Radio Echo Sounding (RES) instrument specifically designed, developed and modified by the INGV (Istituto Nazionale di Geofisica e Vulcanologia) laboratories. This paper reports the results we obtained investigating each glacier, the hampering factors and the cost to benefit ratio introduced by the airborne survey.
Cold Regions Science and Technology, 2018
We computed and analysed the geometry changes affecting an Italian glacierized sector (the Sondri... more We computed and analysed the geometry changes affecting an Italian glacierized sector (the Sondrio Province, Adda River Basin). This zone was chosen because i) there is a relative abundance of high resolution remote sensing data covering the last thirty years, ii) it represents an important sector of the glacierized areas of Italy, and iii) it is first ranked within the list of Italian districts featuring highest hydropower production.
The Cryosphere, 2018
We present and compare 11 years of snow data (snow depth and snow water equivalent, SWE) measured... more We present and compare 11 years of snow data (snow depth and snow water equivalent, SWE) measured by an automatic weather station (AWS) and corroborated by data from field campaigns on the Forni Glacier in Italy. The aim of the analysis is to estimate the SWE of new snowfall and the annual SWE peak based on the average density of the new snow at the site (corresponding to the snowfall during the standard observation period of 24 h) and automated snow depth measurements. The results indicate that the daily SR50 sonic ranger measurements and the available snow pit data can be used to estimate the mean new snow density value at the site, with an error of ±6 kg m −3. Once the new snow density is known, the sonic ranger makes it possible to derive SWE values with an RMSE of 45 mm water equivalent (if compared with snow pillow measurements), which turns out to be about 8 % of the total SWE yearly average. Therefore, the methodology we present is interesting for remote locations such as glaciers or high alpine regions, as it makes it possible to estimate the total SWE using a relatively inexpensive, low-power, low-maintenance, and reliable instrument such as the sonic ranger.
Progress in Physical Geography: Earth and Environment, 2017
Hydrological monitoring and modeling of high altitude Alpine catchments is of paramount importanc... more Hydrological monitoring and modeling of high altitude Alpine catchments is of paramount importance. This is difficult, however, given the complex logistics of field campaigns and the need for long-term data. Here, we present a method for long term monitoring of high altitude catchments, which we tested within the Alps of Italy. This includes i) extensive gathering of climate data and hydrological fluxes, ii) high altitude field campaigns, and iii) robust physically based glacio-hydrological modeling, providing full account of ice flow, ice and snow ablation, and stream flows. We present an application of this method based on six years (2009–2014) of field monitoring in the Dosdè catchment, in the Italian Alps (17 km2, average altitude 2858 masl, outlet 2133 masl), nesting 1.90 km2 of glaciers. We demonstrate that i) high altitude Alpine catchments can be monitored in spite of geographical complexity, and ii) a data based approach delivers accurate stream flow estimates and improves ...
Progress in Physical Geography: Earth and Environment, 2016
The Karakoram Range is one of the most glacierized mountain regions in the world, and glaciers th... more The Karakoram Range is one of the most glacierized mountain regions in the world, and glaciers there are an important water resource for Pakistan. The attention paid to this area is increasing because its glaciers remained rather stable in the early twenty-first century, in contrast to the general glacier retreat observed worldwide on average. This condition is also known as “Karakoram Anomaly”. Here we focus on the recent evolution of glaciers within the Central Karakoram National Park (CKNP, area: *13,000 km2) to assess their status in this region with respect to the described anomaly. A glacier inventory was produced for the years 2001 and 2010, using Landsat images. In total, 711 ice-bodies were detected and digitized, covering an area of 4605.9 ± 86.1 km2in 2001 and 4606.3 ± 183.7 km2in 2010, with abundant supraglacial debris cover. The difference between the area values of 2001 and 2010 is not significant (+0.4 ± 202.9 km2), confirming the anomalous behavior of glaciers in thi...
The Cryosphere Discussions, 2015
The influence of supraglacial debris on the rate and spatial distribution of glacier surface melt... more The influence of supraglacial debris on the rate and spatial distribution of glacier surface melt is well established, but its potential impact on the structure and evolution of the drainage system of extensively debris-covered glaciers has not been previously investigated. Forty-eight dye injections were conducted on Miage Glacier, Italian Alps, throughout the 2010 and 2011 ablation seasons. An efficient conduit system emanates from moulins in the mid-part of the glacier, which are downstream of a high melt area of dirty ice and patchy debris. High melt rates and runoff concentration by intermoraine troughs encourages the early-season development of a channelized system downstream of this area. Conversely, the drainage system beneath the continuously debriscovered lower ablation area is generally inefficient, with multi-peaked traces suggesting a distributed network, which likely feeds into the conduit system fed by the upglacier moulins. Drainage efficiency from the debris-covered area increased over the season but trace flow velocity remained lower than from the upper glacier moulins. Low and less-peaked melt inputs combined with the hummocky topography of the debriscovered area inhibits the formation of an efficient drainage network. These findings are relevant to regions with extensive glacial debris cover and where debris cover is expanding.
Uploads
Papers by Guglielmina Diolaiuti