A recently initiated collaborative project involving apple breeders in seven European countries i... more A recently initiated collaborative project involving apple breeders in seven European countries is described. The objective is to improve the European apple crop by molecular-aided breeding to increase efficiency and reduce the timescale in breeding for resistance, tree habit and fruit quality. The strategy adopted provides a model for similar studies in fruit, forest and other woody species. The project is based on progenies from a small number of crosses involving many important agronomic genes. Replication of these reference progenies by vegetative propagation will enable studies to be carried out simultaneously in each country. By developing a range of molecular markers, including isozymes, RFLPs and sequence-tagged DNA probes, an integrated molecular map is being constructed for use in a wide range of breeding and genetic studies. Construction of a database recording many mapped molecular markers will enable efficient exploitation of data in future genetic, breeding and physiological studies of apple. Aspects of the adopted strategy, techniques and management are discussed in the context of mapping genes in perennial crop genomes.
Cannabis produces a class of isoprenylated resorcinyl polyketides known as cannabinoids, a subset... more Cannabis produces a class of isoprenylated resorcinyl polyketides known as cannabinoids, a subset of which are medically important and exclusive to this plant. The cannabinoid alkyl group is a critical structural feature that governs therapeutic activity. Genetic enhancement of the alkyl side-chain could lead to the development of novel chemical phenotypes (chemotypes) for pharmaceutical end-use. However, the genetic determinants underlying in planta variation of cannabinoid alkyl side-chain length remain uncharacterised. Using a diversity panel derived from the Ecofibre Cannabis germplasm collection, an extreme-phenotype genome-wide association study (XP-GWAS) was used to enrich for alkyl cannabinoid polymorphic regions. Resequencing of chemotypically extreme pools revealed a known cannabinoid synthesis pathway locus as well as a series of chemotype-associated genomic regions. One of these regions contained a candidate gene encoding a β-keto acyl carrier protein (ACP) reductase (BK...
Glucosinolates (GSLs) are secondary metabolites produced by members of the genus Brassica. These ... more Glucosinolates (GSLs) are secondary metabolites produced by members of the genus Brassica. These compounds impart the pungency to brassica vegetables and oils. Due to their health benefits, which include anti-cancer and anti-fungal properties, they have been attracting interest in research. Indian mustard (B. juncea L.), used as condiment and oil crop has high natural levels of seed glucosinolates and displays exploitable natural variation in this trait. In this study a diverse collection of 161 mustard lines originating from 21 countries, will be genotyped and phenotyped. Traits of interest include seed GSLs (sinigrin, gluconapin, progroitin, epi-progoitin and glucoiberin), oil and protein content, as well as basic agro-morphological performance such as height, flowering time and yield. Current knowledge on GSL biosynthesis and its genetic regulation mostly relies on data from Arabidopsis thaliana. We aim to elucidate the genetic architecture of GSL content and composition in relation to other seed traits (oil and protein content) in our diversity panel through association mapping. Additionally, we are aiming to resolve genome complexity of GSL genes in mustard genome in contrast to A. thaliana by identifying gene copy number through in silico analysis. Outcome of this study will help streamline the breeding and product development for either high GSL mustard lines for condiment use or low GSL lines for canola-type oil use. Our preliminary data on seed GSLs seems to reflect the historical use of mustard in different geographical regions. Chinese and European lines featured higher GSL while lines from the Indian subcontinent displayed lower GSL contents.
Meeting the challenge of food and nutritional security requires ongoing innovation, particularly ... more Meeting the challenge of food and nutritional security requires ongoing innovation, particularly in managing dietary nutritional information for pre-breeding analysis, selection, and cultivation of specific food crops and cultivars. At present, the ability to compare the relative nutritional value of crops is limited, with data management systems for most crops often inconsistent and poorly integrated. Here, we review generic efforts to standardize the description and management of crop trait data and discuss several issues currently constraining their exchange and comparison, with a focus on knowledge representation related to dietary nutrition. These issues include lack of consistency within or between crop specific databases, as well as limited data standardization and interoperability. At present, the use of common descriptors or controlled vocabularies between crops is fragmentary, with only partial implementation or uptake of formal ontologies, particularly for dietary nutritional composition. Although development of the existing Crop Ontology (CO) system has improved data sharing and reuse, it represents only a limited set of trait classes and crops. We identify the need for more robust and generic ontologies, particularly those that may address crop contributions to human dietary nutrition. We propose development of a Crop Dietary Nutrition Ontology (CDNO) as a robust structured controlled vocabulary for dietary nutritional composition and function, and provide examples of specific use cases and different end users who would benefit from using CDNO terms in their database searches. This development is likely to transform the way in which crops may be compared in terms of optimal dietary nutritional values.
TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik, Jan 11, 2018
A set of intervarietal substitution lines were developed in rapeseed by recurrent backcrossing an... more A set of intervarietal substitution lines were developed in rapeseed by recurrent backcrossing and marker-assisted selection and employed for mapping both qualitative and quantitative traits. Intervarietal substitution lines (ISLs) may be assembled into advanced secondary mapping populations that have remarkable potential for resolving trait loci and mapping candidate genes. To facilitate the identification of important genes in oilseed rape (canola, Brassica napus), we developed 89 ISLs using an elite cultivar 'Zhongyou 821' (ZY821) as the recipient and a re-synthesized line 'No.2127' as the donor. In the whole process of ISLs development, the target chromosome segments were selected based on the genotypes of 300 microsatellite markers evenly distributed across the genome. Eighty-nine ISLs fixed at BCF were genotyped by sequencing using double digestion to survey the lengths of target substitution segments from the donor parent and the background segments from the r...
Genome-wide association studies (GWASs) combining high-throughput genome resequencing and phenoty... more Genome-wide association studies (GWASs) combining high-throughput genome resequencing and phenotyping can accelerate the dissection of genetic architecture and identification of genes for plant complex traits. In this study, we developed a rapeseed genomic variation map consisting of 4 542 011 SNPs and 628 666 INDELs. GWAS was performed for three seed-quality traits, including erucic acid content (EAC), glucosinolate content (GSC) and seed oil content (SOC) using 3.82 million polymorphisms in an association panel. Six, 49 and 17 loci were detected to be associated with EAC, GSC and SOC in multiple environments, respectively. The mean total contribution of these loci in each environment was 94.1% for EAC and 87.9% for GSC, notably higher than that for SOC (40.1%). A high correlation was observed between phenotypic variance and number of favourable alleles for associated loci, which will contribute to breeding improvement by pyramiding these loci. Furthermore, candidate genes were det...
Terpenes are economically and ecologically important phytochemicals. Their synthesis is controlle... more Terpenes are economically and ecologically important phytochemicals. Their synthesis is controlled by the terpene synthase (TPS) gene family, which is highly diversified throughout the plant kingdom. The plant family Myrtaceae are characterised by especially high terpene concentrations, and considerable variation in terpene profiles. Many Myrtaceae are grown commercially for terpene products including the eucalypts Corymbia and Eucalyptus. Eucalyptus grandis has the largest TPS gene family of plants currently sequenced, which is largely conserved in the closely related E. globulus. However, the TPS gene family has been well studied only in these two eucalypt species. The recent assembly of two Corymbia citriodora subsp. variegata genomes presents an opportunity to examine the conservation of this important gene family across more divergent eucalypt lineages. Manual annotation of the TPS gene family in C. citriodora subsp. variegata revealed a similar overall number, and relative sub...
Allelic variation at the FRIGIDA (FRI) locus is a major contributor to natural variation of flowe... more Allelic variation at the FRIGIDA (FRI) locus is a major contributor to natural variation of flowering time and vernalization requirement in Arabidopsis thaliana. Dominant FRI inhibits flowering by activating the expression of the MADS box transcriptional repressor FLOWERING LOCUS C (FLC), which represses flowering prior to vernalization. Four FRI orthologues had been identified in the domesticated amphidiploid Brassica napus. Linkage and association studies had revealed that one of the FRI orthologues, BnaA3.FRI, contributes to flowering time variation and crop type differentiation. Sequence analyses indicated that three out of the four BnaFRI paralogues, BnaA3.FRI, BnaA10.FRI and BnaC3.FRI, contained a large number of polymorphic sites. Haplotype analysis in a panel of 174 B. napus accessions using PCR markers showed that all the three paralogues had a biased distribution of haplotypes in winter type oilseed rape (P < 0.01). Association analysis indicated that only BnaA3.FRI con...
Homoeologous exchanges (HEs) have been shown to generate novel gene combinations and phenotypes i... more Homoeologous exchanges (HEs) have been shown to generate novel gene combinations and phenotypes in a range of polyploid species. Gene presence/absence variation (PAV) is also a major contributor to genetic diversity. In this study, we show that there is an association between these two events, particularly in recent Brassica napus synthetic accessions, and that these represent a novel source of genetic diversity, which can be captured for the improvement of this important crop species. By assembling the pangenome of B. napus, we show that 38% of the genes display PAV behaviour, with some of these variable genes predicted to be involved in important agronomic traits including flowering time, disease resistance, acyl lipid metabolism and glucosinolate metabolism. This study is a first and provides a detailed characterization of the association between HEs and PAVs in B. napus at the pangenome level.
Plants are extremely versatile organisms that respond to the environment in which they find thems... more Plants are extremely versatile organisms that respond to the environment in which they find themselves, but a large part of their development is under genetic regulation. The links between developmental parameters and yield are poorly understood in oilseed rape; understanding this relationship will help growers to predict their yields more accurately and breeders to focus on traits that may lead to yield improvements. To determine the relationship between seed yield and other agronomic traits, we investigated the natural variation that already exists with regards to resource allocation in 37 lines of the crop species Brassica napus. Over 130 different traits were assessed; they included seed yield parameters, seed composition, leaf mineral analysis, rates of pod and leaf senescence and plant architecture traits. A stepwise regression analysis was used to model statistically the measured traits with seed yield per plant. Above-ground biomass and protein content together accounted for 94.36% of the recorded variation. The primary raceme area, which was highly correlated with yield parameters (0.65), provides an early indicator of potential yield. The pod and leaf photosynthetic and senescence parameters measured had only a limited influence on seed yield and were not correlated with each other, indicating that reproductive development is not necessarily driving the senescence process within field-grown B. napus. Assessing the diversity that exists within the B. napus gene pool has highlighted architectural, seed and mineral composition traits that should be targeted in breeding programmes through the development of linked markers to improve crop yields.
Aquaporins (AQPs) are an abundant protein family and play important roles to facilitate small neu... more Aquaporins (AQPs) are an abundant protein family and play important roles to facilitate small neutral molecule transport across membranes. Oilseed rape (Brassica napus L.) is an important oil crop in China and elsewhere in the world, and is very sensitive to low boron (B) stress. Several AQP family genes have been reported to be involved in B transport across plasma membranes in plants. In this study, a total of 121 full-length AQPs were identified and characterized in B. napus (AC genome), and could be classified into four sub-families, including 43 PIPs (plasma membrane intrinsic proteins), 35 TIPs (tonoplast intrinsic proteins), 32 NIPs (NOD26-like intrinsic proteins), and 11 SIPs (small basic intrinsic proteins). The gene characteristics of BnaAQPs were similar to those of BraAQPs (A genome) and BolAQPs (C genome) including the composition of each sub-family, gene structure, and substrate selectivity filters. The BnaNIP was the most complex AQP sub-family, reflecting the composi...
Lysophospholipids (LPLs) are the most abundant polar lipids in wheat endosperm and naturally comp... more Lysophospholipids (LPLs) are the most abundant polar lipids in wheat endosperm and naturally complex with amylose, affecting starch physicochemical properties. We analyzed LPLs in wheat flour from 58 cultivars which differ by grain hardness using liquid chromatography mass spectrometry (LCMS). There were significant differences in LPL content between cultivars, demonstrating that genotype rather than environment contributes most to the total variance in wheat endosperm LPLs. Polar lipids such as LPLs may play a role in grain hardness through their interaction with puroindoline proteins, however, no strong correlation between kernel hardness and LPLs was detected. This may reflect the location of LPLs within the starch granule as opposed to the puroindoline proteins outside starch granules. LPLs may have an indirect relationship with kernel hardness as they could share the same origin as polar lipids that interact with puroindoline on the starch granule surface.
As an increasing number of plant genome sequences become available, it is clear that gene content... more As an increasing number of plant genome sequences become available, it is clear that gene content varies between individuals, and the challenge arises to predict the gene content of a species. However, genome comparison is often confounded by variation in assembly and annotation. Differentiating between true gene absence and variation in assembly or annotation is essential for the accurate identification of conserved and variable genes in a species. Here we present the de novo assembly of the B. napus cultivar Tapidor and comparison with an improved assembly of the B. napus cultivar Darmor-bzh. Both cultivars were annotated using the same method to allow comparison of gene content. We identified genes unique to each cultivar and differentiate these from artefacts due to variation in the assembly and annotation. We demonstrate that using a common annotation pipeline can result in different gene predictions, even for closely related cultivars, and repeat regions which collapse during ...
The Brassica Information Portal (BIP) is a centralised repository for Brassica phenotypic data. T... more The Brassica Information Portal (BIP) is a centralised repository for Brassica phenotypic data. Trait data associated with Brassica research and breeding experiments conducted on Brassica crops, used as vegetables, for livestock fodder and biofuels, is hosted on the site, together with information on the experimental plant materials used, as well as trial design. BIP is an open access and open source project, built on the schema of CropStoreDB, and as such can provide trait data management strategies for any crop data. A new user interface and programmatic submission/retrieval system helps to simplify data access for scientists and breeders. BIP opens up the opportunity to apply big data analyses to data generated by the Brassica Research Community. Here, we present a short description of the current status of the repository.
Whole genome duplication (WGD) and tandem duplication (TD) provide two critical sources of raw ge... more Whole genome duplication (WGD) and tandem duplication (TD) provide two critical sources of raw genetic material for genome complexity and evolutionary novelty. Little is known about the complexity of the Sesamum indicum genome after it diverged from a common ancestor with the paleodiploid Vitis vinifera and further experienced WGD and TD events. Here, we analyzed the functional divergence of different classes of inter- and intra-genome gene pairs from ancestral events to uncover multiple-layers of evolutionary dynamics acting during the process of forming the modern S. indicum genome. Comprehensive inter-genome analyses revealed that 60% and 70% of syntenic orthologous gene pairs were retained among the two subgenomes in S. indicum compared to V. vinifera, although there was no evidence of significant differences under selection pressure. For the intra-genomic analyses, 5,932 duplicated gene pairs experienced fractionation, with the remaining 1,236 duplicated gene pairs having under...
Glucosinolates (GSLs) represent one of the most widely studied classes of plant secondary metabol... more Glucosinolates (GSLs) represent one of the most widely studied classes of plant secondary metabolite, and have a wide range of biological activities. Their unique properties also affect livestock and human health, and have been harnessed for food and other end-uses. Since GSLs are sulfur (S)-rich there are many lines of evidence suggesting that plant S status plays a key role in determining plant GSL content. However, there is still a need to establish a detailed knowledge of the distribution and remobilization of S and GSLs throughout the development of Brassica crops, and to represent this in terms of primary and secondary sources and sinks. The increased genome complexity, gene duplication and divergence within brassicas, together with their ontogenetic plasticity during crop development, appear to have a marked effect on the regulation of S and GSLs. Here, we review the current understanding of inorganic S (sulfate) assimilation into organic S forms, including GSLs and their pre...
Background: The large Gondwanan plant family Proteaceae is an early-diverging eudicot lineage ren... more Background: The large Gondwanan plant family Proteaceae is an early-diverging eudicot lineage renowned for its morphological, taxonomic and ecological diversity. Macadamia is the most economically important Proteaceae crop and represents an ancient rainforest-restricted lineage. The family is a focus for studies of adaptive radiation due to remarkable species diversification in Mediterranean-climate biodiversity hotspots, and numerous evolutionary transitions between biomes. Despite a long history of research, comparative analyses in the Proteaceae and macadamia breeding programs are restricted by a paucity of genetic information. To address this, we sequenced the genome and transcriptome of the widely grown Macadamia integrifolia cultivar 741. Results: Over 95 gigabases of DNA and RNA-seq sequence data were de novo assembled and annotated. The draft assembly has a total length of 518 Mb and spans approximately 79% of the estimated genome size. Following annotation, 35,337 protein-coding genes were predicted of which over 90% were expressed in at least one of the leaf, shoot or flower tissues examined. Gene family comparisons with five other eudicot species revealed 13,689 clusters containing macadamia genes and 1005 macadamia-specific clusters, and provides evidence for linage-specific expansion of gene families involved in pathogen recognition, plant defense and monoterpene synthesis. Cyanogenesis is an important defense strategy in the Proteaceae, and a detailed analysis of macadamia gene homologues potentially involved in cyanogenic glycoside biosynthesis revealed several highly expressed candidate genes. Conclusions: The gene space of macadamia provides a foundation for comparative genomics, gene discovery and the acceleration of molecular-assisted breeding. This study presents the first available genomic resources for the large basal eudicot family Proteaceae, access to most macadamia genes and opportunities to uncover the genetic basis of traits of importance for adaptation and crop improvement.
International journal of molecular sciences, Jan 27, 2016
Sanguinaria canadensis, also known as bloodroot, is a traditional medicine used by Native America... more Sanguinaria canadensis, also known as bloodroot, is a traditional medicine used by Native Americans to treat a diverse range of clinical conditions. The plants rhizome contains several alkaloids that individually target multiple molecular processes. These bioactive compounds, mechanistically correlate with the plant's history of ethnobotanical use. Despite their identification over 50 years ago, the alkaloids of S. canadensis have not been developed into successful therapeutic agents. Instead, they have been associated with clinical toxicities ranging from mouthwash induced leukoplakia to cancer salve necrosis and treatment failure. This review explores the historical use of S. canadensis, the molecular actions of the benzophenanthridine and protopin alkaloids it contains, and explores natural alkaloid variation as a possible rationale for the inconsistent efficacy and toxicities encountered by S. canadensis therapies. Current veterinary and medicinal uses of the plant are studi...
A high-density SNP-based genetic linkage map was constructed and integrated with a previous map i... more A high-density SNP-based genetic linkage map was constructed and integrated with a previous map in the Tapidor x Ningyou7 (TNDH) Brassica napus population, giving a new map with a total of 2041 molecular markers and an average marker density which increased from 0.39 to 0.97 (0.82 SNP bin) per cM. Root and shoot traits were screened under low and 'normal' phosphate (Pi) supply using a 'pouch and wick' system, and had been screened previously in an agar based system. The P-efficient parent Ningyou7 had a shorter primary root length (PRL), greater lateral root density (LRD) and a greater shoot biomass than the P-inefficient parent Tapidor under both treatments and growth systems. Quantitative trait loci (QTL) analysis identified a total of 131 QTL, and QTL meta-analysis found four integrated QTL across the growth systems. Integration reduced the confidence interval by ~41%. QTL for root and shoot biomass were co-located on chromosome A3 and for lateral root emergence w...
The Journal of Horticultural Science and Biotechnology, 2010
The low availability of zinc (Zn) in soils and crops affects dietary Zn intake worldwide. This st... more The low availability of zinc (Zn) in soils and crops affects dietary Zn intake worldwide. This study sought to determine if the natural genetic variation in shoot Zn concentrations ([Zn](shoot)) is sufficient to pursue a crop improvement breeding strategy in a leafy vegetable crop. The ...
A recently initiated collaborative project involving apple breeders in seven European countries i... more A recently initiated collaborative project involving apple breeders in seven European countries is described. The objective is to improve the European apple crop by molecular-aided breeding to increase efficiency and reduce the timescale in breeding for resistance, tree habit and fruit quality. The strategy adopted provides a model for similar studies in fruit, forest and other woody species. The project is based on progenies from a small number of crosses involving many important agronomic genes. Replication of these reference progenies by vegetative propagation will enable studies to be carried out simultaneously in each country. By developing a range of molecular markers, including isozymes, RFLPs and sequence-tagged DNA probes, an integrated molecular map is being constructed for use in a wide range of breeding and genetic studies. Construction of a database recording many mapped molecular markers will enable efficient exploitation of data in future genetic, breeding and physiological studies of apple. Aspects of the adopted strategy, techniques and management are discussed in the context of mapping genes in perennial crop genomes.
Cannabis produces a class of isoprenylated resorcinyl polyketides known as cannabinoids, a subset... more Cannabis produces a class of isoprenylated resorcinyl polyketides known as cannabinoids, a subset of which are medically important and exclusive to this plant. The cannabinoid alkyl group is a critical structural feature that governs therapeutic activity. Genetic enhancement of the alkyl side-chain could lead to the development of novel chemical phenotypes (chemotypes) for pharmaceutical end-use. However, the genetic determinants underlying in planta variation of cannabinoid alkyl side-chain length remain uncharacterised. Using a diversity panel derived from the Ecofibre Cannabis germplasm collection, an extreme-phenotype genome-wide association study (XP-GWAS) was used to enrich for alkyl cannabinoid polymorphic regions. Resequencing of chemotypically extreme pools revealed a known cannabinoid synthesis pathway locus as well as a series of chemotype-associated genomic regions. One of these regions contained a candidate gene encoding a β-keto acyl carrier protein (ACP) reductase (BK...
Glucosinolates (GSLs) are secondary metabolites produced by members of the genus Brassica. These ... more Glucosinolates (GSLs) are secondary metabolites produced by members of the genus Brassica. These compounds impart the pungency to brassica vegetables and oils. Due to their health benefits, which include anti-cancer and anti-fungal properties, they have been attracting interest in research. Indian mustard (B. juncea L.), used as condiment and oil crop has high natural levels of seed glucosinolates and displays exploitable natural variation in this trait. In this study a diverse collection of 161 mustard lines originating from 21 countries, will be genotyped and phenotyped. Traits of interest include seed GSLs (sinigrin, gluconapin, progroitin, epi-progoitin and glucoiberin), oil and protein content, as well as basic agro-morphological performance such as height, flowering time and yield. Current knowledge on GSL biosynthesis and its genetic regulation mostly relies on data from Arabidopsis thaliana. We aim to elucidate the genetic architecture of GSL content and composition in relation to other seed traits (oil and protein content) in our diversity panel through association mapping. Additionally, we are aiming to resolve genome complexity of GSL genes in mustard genome in contrast to A. thaliana by identifying gene copy number through in silico analysis. Outcome of this study will help streamline the breeding and product development for either high GSL mustard lines for condiment use or low GSL lines for canola-type oil use. Our preliminary data on seed GSLs seems to reflect the historical use of mustard in different geographical regions. Chinese and European lines featured higher GSL while lines from the Indian subcontinent displayed lower GSL contents.
Meeting the challenge of food and nutritional security requires ongoing innovation, particularly ... more Meeting the challenge of food and nutritional security requires ongoing innovation, particularly in managing dietary nutritional information for pre-breeding analysis, selection, and cultivation of specific food crops and cultivars. At present, the ability to compare the relative nutritional value of crops is limited, with data management systems for most crops often inconsistent and poorly integrated. Here, we review generic efforts to standardize the description and management of crop trait data and discuss several issues currently constraining their exchange and comparison, with a focus on knowledge representation related to dietary nutrition. These issues include lack of consistency within or between crop specific databases, as well as limited data standardization and interoperability. At present, the use of common descriptors or controlled vocabularies between crops is fragmentary, with only partial implementation or uptake of formal ontologies, particularly for dietary nutritional composition. Although development of the existing Crop Ontology (CO) system has improved data sharing and reuse, it represents only a limited set of trait classes and crops. We identify the need for more robust and generic ontologies, particularly those that may address crop contributions to human dietary nutrition. We propose development of a Crop Dietary Nutrition Ontology (CDNO) as a robust structured controlled vocabulary for dietary nutritional composition and function, and provide examples of specific use cases and different end users who would benefit from using CDNO terms in their database searches. This development is likely to transform the way in which crops may be compared in terms of optimal dietary nutritional values.
TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik, Jan 11, 2018
A set of intervarietal substitution lines were developed in rapeseed by recurrent backcrossing an... more A set of intervarietal substitution lines were developed in rapeseed by recurrent backcrossing and marker-assisted selection and employed for mapping both qualitative and quantitative traits. Intervarietal substitution lines (ISLs) may be assembled into advanced secondary mapping populations that have remarkable potential for resolving trait loci and mapping candidate genes. To facilitate the identification of important genes in oilseed rape (canola, Brassica napus), we developed 89 ISLs using an elite cultivar 'Zhongyou 821' (ZY821) as the recipient and a re-synthesized line 'No.2127' as the donor. In the whole process of ISLs development, the target chromosome segments were selected based on the genotypes of 300 microsatellite markers evenly distributed across the genome. Eighty-nine ISLs fixed at BCF were genotyped by sequencing using double digestion to survey the lengths of target substitution segments from the donor parent and the background segments from the r...
Genome-wide association studies (GWASs) combining high-throughput genome resequencing and phenoty... more Genome-wide association studies (GWASs) combining high-throughput genome resequencing and phenotyping can accelerate the dissection of genetic architecture and identification of genes for plant complex traits. In this study, we developed a rapeseed genomic variation map consisting of 4 542 011 SNPs and 628 666 INDELs. GWAS was performed for three seed-quality traits, including erucic acid content (EAC), glucosinolate content (GSC) and seed oil content (SOC) using 3.82 million polymorphisms in an association panel. Six, 49 and 17 loci were detected to be associated with EAC, GSC and SOC in multiple environments, respectively. The mean total contribution of these loci in each environment was 94.1% for EAC and 87.9% for GSC, notably higher than that for SOC (40.1%). A high correlation was observed between phenotypic variance and number of favourable alleles for associated loci, which will contribute to breeding improvement by pyramiding these loci. Furthermore, candidate genes were det...
Terpenes are economically and ecologically important phytochemicals. Their synthesis is controlle... more Terpenes are economically and ecologically important phytochemicals. Their synthesis is controlled by the terpene synthase (TPS) gene family, which is highly diversified throughout the plant kingdom. The plant family Myrtaceae are characterised by especially high terpene concentrations, and considerable variation in terpene profiles. Many Myrtaceae are grown commercially for terpene products including the eucalypts Corymbia and Eucalyptus. Eucalyptus grandis has the largest TPS gene family of plants currently sequenced, which is largely conserved in the closely related E. globulus. However, the TPS gene family has been well studied only in these two eucalypt species. The recent assembly of two Corymbia citriodora subsp. variegata genomes presents an opportunity to examine the conservation of this important gene family across more divergent eucalypt lineages. Manual annotation of the TPS gene family in C. citriodora subsp. variegata revealed a similar overall number, and relative sub...
Allelic variation at the FRIGIDA (FRI) locus is a major contributor to natural variation of flowe... more Allelic variation at the FRIGIDA (FRI) locus is a major contributor to natural variation of flowering time and vernalization requirement in Arabidopsis thaliana. Dominant FRI inhibits flowering by activating the expression of the MADS box transcriptional repressor FLOWERING LOCUS C (FLC), which represses flowering prior to vernalization. Four FRI orthologues had been identified in the domesticated amphidiploid Brassica napus. Linkage and association studies had revealed that one of the FRI orthologues, BnaA3.FRI, contributes to flowering time variation and crop type differentiation. Sequence analyses indicated that three out of the four BnaFRI paralogues, BnaA3.FRI, BnaA10.FRI and BnaC3.FRI, contained a large number of polymorphic sites. Haplotype analysis in a panel of 174 B. napus accessions using PCR markers showed that all the three paralogues had a biased distribution of haplotypes in winter type oilseed rape (P < 0.01). Association analysis indicated that only BnaA3.FRI con...
Homoeologous exchanges (HEs) have been shown to generate novel gene combinations and phenotypes i... more Homoeologous exchanges (HEs) have been shown to generate novel gene combinations and phenotypes in a range of polyploid species. Gene presence/absence variation (PAV) is also a major contributor to genetic diversity. In this study, we show that there is an association between these two events, particularly in recent Brassica napus synthetic accessions, and that these represent a novel source of genetic diversity, which can be captured for the improvement of this important crop species. By assembling the pangenome of B. napus, we show that 38% of the genes display PAV behaviour, with some of these variable genes predicted to be involved in important agronomic traits including flowering time, disease resistance, acyl lipid metabolism and glucosinolate metabolism. This study is a first and provides a detailed characterization of the association between HEs and PAVs in B. napus at the pangenome level.
Plants are extremely versatile organisms that respond to the environment in which they find thems... more Plants are extremely versatile organisms that respond to the environment in which they find themselves, but a large part of their development is under genetic regulation. The links between developmental parameters and yield are poorly understood in oilseed rape; understanding this relationship will help growers to predict their yields more accurately and breeders to focus on traits that may lead to yield improvements. To determine the relationship between seed yield and other agronomic traits, we investigated the natural variation that already exists with regards to resource allocation in 37 lines of the crop species Brassica napus. Over 130 different traits were assessed; they included seed yield parameters, seed composition, leaf mineral analysis, rates of pod and leaf senescence and plant architecture traits. A stepwise regression analysis was used to model statistically the measured traits with seed yield per plant. Above-ground biomass and protein content together accounted for 94.36% of the recorded variation. The primary raceme area, which was highly correlated with yield parameters (0.65), provides an early indicator of potential yield. The pod and leaf photosynthetic and senescence parameters measured had only a limited influence on seed yield and were not correlated with each other, indicating that reproductive development is not necessarily driving the senescence process within field-grown B. napus. Assessing the diversity that exists within the B. napus gene pool has highlighted architectural, seed and mineral composition traits that should be targeted in breeding programmes through the development of linked markers to improve crop yields.
Aquaporins (AQPs) are an abundant protein family and play important roles to facilitate small neu... more Aquaporins (AQPs) are an abundant protein family and play important roles to facilitate small neutral molecule transport across membranes. Oilseed rape (Brassica napus L.) is an important oil crop in China and elsewhere in the world, and is very sensitive to low boron (B) stress. Several AQP family genes have been reported to be involved in B transport across plasma membranes in plants. In this study, a total of 121 full-length AQPs were identified and characterized in B. napus (AC genome), and could be classified into four sub-families, including 43 PIPs (plasma membrane intrinsic proteins), 35 TIPs (tonoplast intrinsic proteins), 32 NIPs (NOD26-like intrinsic proteins), and 11 SIPs (small basic intrinsic proteins). The gene characteristics of BnaAQPs were similar to those of BraAQPs (A genome) and BolAQPs (C genome) including the composition of each sub-family, gene structure, and substrate selectivity filters. The BnaNIP was the most complex AQP sub-family, reflecting the composi...
Lysophospholipids (LPLs) are the most abundant polar lipids in wheat endosperm and naturally comp... more Lysophospholipids (LPLs) are the most abundant polar lipids in wheat endosperm and naturally complex with amylose, affecting starch physicochemical properties. We analyzed LPLs in wheat flour from 58 cultivars which differ by grain hardness using liquid chromatography mass spectrometry (LCMS). There were significant differences in LPL content between cultivars, demonstrating that genotype rather than environment contributes most to the total variance in wheat endosperm LPLs. Polar lipids such as LPLs may play a role in grain hardness through their interaction with puroindoline proteins, however, no strong correlation between kernel hardness and LPLs was detected. This may reflect the location of LPLs within the starch granule as opposed to the puroindoline proteins outside starch granules. LPLs may have an indirect relationship with kernel hardness as they could share the same origin as polar lipids that interact with puroindoline on the starch granule surface.
As an increasing number of plant genome sequences become available, it is clear that gene content... more As an increasing number of plant genome sequences become available, it is clear that gene content varies between individuals, and the challenge arises to predict the gene content of a species. However, genome comparison is often confounded by variation in assembly and annotation. Differentiating between true gene absence and variation in assembly or annotation is essential for the accurate identification of conserved and variable genes in a species. Here we present the de novo assembly of the B. napus cultivar Tapidor and comparison with an improved assembly of the B. napus cultivar Darmor-bzh. Both cultivars were annotated using the same method to allow comparison of gene content. We identified genes unique to each cultivar and differentiate these from artefacts due to variation in the assembly and annotation. We demonstrate that using a common annotation pipeline can result in different gene predictions, even for closely related cultivars, and repeat regions which collapse during ...
The Brassica Information Portal (BIP) is a centralised repository for Brassica phenotypic data. T... more The Brassica Information Portal (BIP) is a centralised repository for Brassica phenotypic data. Trait data associated with Brassica research and breeding experiments conducted on Brassica crops, used as vegetables, for livestock fodder and biofuels, is hosted on the site, together with information on the experimental plant materials used, as well as trial design. BIP is an open access and open source project, built on the schema of CropStoreDB, and as such can provide trait data management strategies for any crop data. A new user interface and programmatic submission/retrieval system helps to simplify data access for scientists and breeders. BIP opens up the opportunity to apply big data analyses to data generated by the Brassica Research Community. Here, we present a short description of the current status of the repository.
Whole genome duplication (WGD) and tandem duplication (TD) provide two critical sources of raw ge... more Whole genome duplication (WGD) and tandem duplication (TD) provide two critical sources of raw genetic material for genome complexity and evolutionary novelty. Little is known about the complexity of the Sesamum indicum genome after it diverged from a common ancestor with the paleodiploid Vitis vinifera and further experienced WGD and TD events. Here, we analyzed the functional divergence of different classes of inter- and intra-genome gene pairs from ancestral events to uncover multiple-layers of evolutionary dynamics acting during the process of forming the modern S. indicum genome. Comprehensive inter-genome analyses revealed that 60% and 70% of syntenic orthologous gene pairs were retained among the two subgenomes in S. indicum compared to V. vinifera, although there was no evidence of significant differences under selection pressure. For the intra-genomic analyses, 5,932 duplicated gene pairs experienced fractionation, with the remaining 1,236 duplicated gene pairs having under...
Glucosinolates (GSLs) represent one of the most widely studied classes of plant secondary metabol... more Glucosinolates (GSLs) represent one of the most widely studied classes of plant secondary metabolite, and have a wide range of biological activities. Their unique properties also affect livestock and human health, and have been harnessed for food and other end-uses. Since GSLs are sulfur (S)-rich there are many lines of evidence suggesting that plant S status plays a key role in determining plant GSL content. However, there is still a need to establish a detailed knowledge of the distribution and remobilization of S and GSLs throughout the development of Brassica crops, and to represent this in terms of primary and secondary sources and sinks. The increased genome complexity, gene duplication and divergence within brassicas, together with their ontogenetic plasticity during crop development, appear to have a marked effect on the regulation of S and GSLs. Here, we review the current understanding of inorganic S (sulfate) assimilation into organic S forms, including GSLs and their pre...
Background: The large Gondwanan plant family Proteaceae is an early-diverging eudicot lineage ren... more Background: The large Gondwanan plant family Proteaceae is an early-diverging eudicot lineage renowned for its morphological, taxonomic and ecological diversity. Macadamia is the most economically important Proteaceae crop and represents an ancient rainforest-restricted lineage. The family is a focus for studies of adaptive radiation due to remarkable species diversification in Mediterranean-climate biodiversity hotspots, and numerous evolutionary transitions between biomes. Despite a long history of research, comparative analyses in the Proteaceae and macadamia breeding programs are restricted by a paucity of genetic information. To address this, we sequenced the genome and transcriptome of the widely grown Macadamia integrifolia cultivar 741. Results: Over 95 gigabases of DNA and RNA-seq sequence data were de novo assembled and annotated. The draft assembly has a total length of 518 Mb and spans approximately 79% of the estimated genome size. Following annotation, 35,337 protein-coding genes were predicted of which over 90% were expressed in at least one of the leaf, shoot or flower tissues examined. Gene family comparisons with five other eudicot species revealed 13,689 clusters containing macadamia genes and 1005 macadamia-specific clusters, and provides evidence for linage-specific expansion of gene families involved in pathogen recognition, plant defense and monoterpene synthesis. Cyanogenesis is an important defense strategy in the Proteaceae, and a detailed analysis of macadamia gene homologues potentially involved in cyanogenic glycoside biosynthesis revealed several highly expressed candidate genes. Conclusions: The gene space of macadamia provides a foundation for comparative genomics, gene discovery and the acceleration of molecular-assisted breeding. This study presents the first available genomic resources for the large basal eudicot family Proteaceae, access to most macadamia genes and opportunities to uncover the genetic basis of traits of importance for adaptation and crop improvement.
International journal of molecular sciences, Jan 27, 2016
Sanguinaria canadensis, also known as bloodroot, is a traditional medicine used by Native America... more Sanguinaria canadensis, also known as bloodroot, is a traditional medicine used by Native Americans to treat a diverse range of clinical conditions. The plants rhizome contains several alkaloids that individually target multiple molecular processes. These bioactive compounds, mechanistically correlate with the plant's history of ethnobotanical use. Despite their identification over 50 years ago, the alkaloids of S. canadensis have not been developed into successful therapeutic agents. Instead, they have been associated with clinical toxicities ranging from mouthwash induced leukoplakia to cancer salve necrosis and treatment failure. This review explores the historical use of S. canadensis, the molecular actions of the benzophenanthridine and protopin alkaloids it contains, and explores natural alkaloid variation as a possible rationale for the inconsistent efficacy and toxicities encountered by S. canadensis therapies. Current veterinary and medicinal uses of the plant are studi...
A high-density SNP-based genetic linkage map was constructed and integrated with a previous map i... more A high-density SNP-based genetic linkage map was constructed and integrated with a previous map in the Tapidor x Ningyou7 (TNDH) Brassica napus population, giving a new map with a total of 2041 molecular markers and an average marker density which increased from 0.39 to 0.97 (0.82 SNP bin) per cM. Root and shoot traits were screened under low and 'normal' phosphate (Pi) supply using a 'pouch and wick' system, and had been screened previously in an agar based system. The P-efficient parent Ningyou7 had a shorter primary root length (PRL), greater lateral root density (LRD) and a greater shoot biomass than the P-inefficient parent Tapidor under both treatments and growth systems. Quantitative trait loci (QTL) analysis identified a total of 131 QTL, and QTL meta-analysis found four integrated QTL across the growth systems. Integration reduced the confidence interval by ~41%. QTL for root and shoot biomass were co-located on chromosome A3 and for lateral root emergence w...
The Journal of Horticultural Science and Biotechnology, 2010
The low availability of zinc (Zn) in soils and crops affects dietary Zn intake worldwide. This st... more The low availability of zinc (Zn) in soils and crops affects dietary Zn intake worldwide. This study sought to determine if the natural genetic variation in shoot Zn concentrations ([Zn](shoot)) is sufficient to pursue a crop improvement breeding strategy in a leafy vegetable crop. The ...
Uploads
Papers by Graham King